

PRIMER NOTE

Trinucleotide microsatellite loci for the peppered moth (*Biston betularia*)

D. DALY, K. WALTHAM, J. MULLEY, P. C. WATTS, A. ROSIN, S. J. KEMP and I. J. SACCHERI
School of Biological Sciences, The Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK

Abstract

Fourteen polymorphic trinucleotide microsatellites were isolated in the peppered moth, *Biston betularia*, using an enrichment protocol. Moderate to high allelic diversity (three to 22 alleles per locus) was found in a sample from northern England. We are currently using these markers to study the population structure of *B. betularia* in northern England, where a cline for melanism still exists.

Keywords: *Biston betularia*, Lepidoptera, microsatellite

Received 26 November 2003; revision accepted 9 January 2004

The rapid changes in melanic colour morph frequencies through the 19th and 20th centuries have established the peppered moth, *Biston betularia*, as a classic example of natural selection in action (Cook 2000). The motivation for developing polymorphic microsatellites for this species was to study the spatial genetic structure in the north of England, where the cline in melanic morph frequencies has been most intensively monitored. Description of the pattern of gene flow will be valuable in explaining the spatial and temporal variation in melanic morph frequencies in terms of gene flow and selection.

Peppered moth genomic DNA was extracted following Saccheri & Bruford (1993). DNA (10 µg) from a single *B. carbonaria* female (from Caldy, Wirral) was digested with *Sau3AI* (Boehringer-Mannheim) and ligated to phosphorylated linkers (S61, 5'-GGCCAGAGACCCCAAGCTTCG-3' annealed to S62, 5'-PO₄-GATCCGAAGCTTGGGTCTCTGGCC-3'; Refseth *et al.* 1997). DNA fragments between 500 and 1000 bp were excised from a 2% NuSieve GTG gel (FMC Bioproducts) and purified using a QIAquick gel extraction kit (Qiagen). For enrichment we used 1 mg of M2-80 streptavidin-coated magnetic beads (Dynal) incubated with 200 pmol of 3'-biotin-labelled oligonucleotide (MWG Biotech). We enriched for two different oligonucleotide pools: (i) CAA₈/GAA₈ and (ii) CAG₈/GTG₈. After several differential stringency washes, the enriched DNA was recovered, made double stranded and amplified by polymerase chain reaction (PCR).

Correspondence: Ilik Saccheri. Fax: 44 (0)151 7954408; E-mail: saccheri@liv.ac.uk

The DNA fragments were purified using QIAquick PCR purification kit (Qiagen), ligated into pGEM®-T vector (Promega) and transformed into JM109 *Escherichia coli* competent cells (Promega). Full details of the enrichment protocol are provided by Bloor *et al.* (2001). All recombinant clones, identified using blue/white screening, were gridded onto Hybond nylon membranes and positive clones were identified by hybridization with [γ ³³P]-ATP-labelled oligonucleotides (Sambrook *et al.* 1989). Plasmids were isolated using standard protocols and then cycle sequenced using Big Dye™ chemistry (PE Applied Biosystems) and electrophoresed on an ABI 377. Primers flanking the repeat regions were designed using OLIGO version 6 (Rychlik 2000) or PRIMER 3 (Rozen & Skaletsky 1998).

Loci were initially tested for polymorphism with radioactively labelled primers in a sample of 16 peppered moths caught along a transect between North Wales and Yorkshire. The 12 most polymorphic and easily scorable loci were then studied in a much larger sample of 375. The PCR was performed on a Techne Flexigene thermocycler in 5 µL reaction volumes using ReddyMix PCR Mix (ABgene). The standard PCR cycle was: (i) 3 min at 95 °C; (ii) five cycles of 30 s at 94 °C, 30 s at T_a (°C) and 30 s at 72 °C; (iii) 30 cycles of 30 s at 92 °C, 30 s at T_a (°C) and 30 s at 72 °C; and (iv) 72 °C for 5 min, where T_a is the optimized annealing temperature for each locus (Table 1). Each reaction contained 75 mM Tris-HCl, 20 mM (NH)₄SO₄, 0.01% (v/v) Tween 20, 0.2 mM each dNTP, 1.5–3.5 mM MgCl₂ (see Table 1), 0.2 µM of each primer, 0.25 U of *Taq* polymerase (ABgene), and approximately 10 ng template DNA. Forward primers were 5' labelled with Beckman-Coulter fluorescent

2 PRIMER NOTE

Table 1 Core repeat sequences, primer sequences and summary of polymorphism statistics for 14 microsatellite loci isolated from the peppered moth, *Biston betularia*

Locus Accession no.	Core sequence	Primer sequence (5'-3')	Size range (bp)	n	H_O	H_E	T_a (°C)	$MgCl_2$ (mM)
Biston 01 AY190965	(GTT) ₈	CGTAATTAAACCACCAATAGAGC CGCGAAGGAGTTTAAGTAGA	100–134	375	0.45	4	57	2.5
Biston 02 AY190966	(GTT) ₆ (GTT) ₃ ..(GTT) ₃ ..(GTT) ₂	GCGAGGCATCCGATAGTGAAG CCAACCTGGCTGATGATAACTGA	208–260	375	0.55	13	60	1.5
Biston 03 AY190967	AAC..(AAC) ₆ ..AAC..(AAC) ₄	TGTCCGCAAGCACCTAAC GTCTCAATTTCACCGATGACCT	243–257	16	0.31	3	61	3.5
Biston 04 AY190968	(CAA) ₆ ..(CAA) ₅ ..CAA..(CAA) ₂ ..CAA	TAAGAGAAGGTGTTGCGAAGG GAATGGCTTGGGAATGGTAAC	269–284	375	0.59	6	60	3.5
Biston 05 AY485266	(GTT) ₇ GTGTTAGCTGTATTGT(GTT) ₂	TTGACTAGCTAATTGTCGC GGTCATACACATACGCTGTCAAC	244–255	8	0.25	3	57	2.5
Biston 06 AY190970	(GTT) ₁₇ (GT) ₃ GTT	GCAGTCTTAAATGTATTGCC CACAGTCAGAGACCACGTTCA	99–141	375	0.37	13	57	2.5
Biston 07 AY190971	(GAT) ₃ (GAC) ₃ (GAT) ₄ ..(GGT) ₁₂ ..(GGT) ₃	AAAGCACTTACATGGTGGACG GCCCTGCCAACCTTAAAC	198–231	375	0.46	9	57	1.5
Biston 08 AY190972	(CAA) ₆ TA(CAA) ₆ TACAACA(CAA) ₂	GGAATGCAACTGGCTCTCAAGT CGACTGCCTAAAGATTAGCG	185–200	375	0.43	6	60	1.5
Biston 09 AY190973	(CAA) ₃ ..(ACA) ₂ ..(CAA) ₅ ..(CAA) ₅ ..(CAA) ₂	GGGAGAGGCCTATGTAACAAAT TTTTCGGAAGCACCTTGTAAG	239–283	375	0.41	10	60	3.5
Biston 10 AY190974	CAACA(CAAA) ₃ CAATCAAAT	CCAGTAGTTTCGGAGCGTATTCA TGTACAGACACGGCTCGTTTAC	112–131	375	0.18	5	61	3.5
Biston 11 AY190975	(CAA) ₃ ..(CAA) ₇ ..(CAA) ₂ (CAAA) ₂ (CAA) ₄ ..(CAA) ₄	CCGCTTCATGGTAAATAAG GCGTGATGGTAATGGGATTTC	199–226	375	0.37	10	57	1.5
Biston 12 AY226153	(GTT) ₁₄	CTAAAAGCGAAACTGCGAAC AAGCCCCTAGAAGTCAATCC	151–191	375	0.77	22	60	2.5
Biston 13 AY226154	(GTT) ₁₇ (GT) ₃ GTT	AAGTCGGTGAAGTCGGGATAG TTCAAGGCCATAAGTCATC	286–324	375	0.33	16	60	2.5
Biston 14 AY226155	(GTT) ₂ ..(GTT) ₃ ..(GTT) ₅	CGATGATAGCTCAGTCACACC GTGGTAAAGCACACCTAGCC	193–214	375	0.60	8	60	3.5

n, sample size; N_a , number of alleles; T_a , annealing temperature; H_O , observed heterozygosity; H_E , expected heterozygosity.

dyes (D2, D3 and D4). The PCR products were separated by capillary electrophoresis, with a 400-bp size standard (Beckman-Coulter), through a denaturing acrylamide gel matrix on an automated sequencer (Ceq8000; Beckman-Coulter). Alleles were sized using the Ceq8000 fragment analysis software.

Fourteen polymorphic microsatellite loci were isolated in *B. betularia* (Table 1). As is often the case, many of the core repeat sequences (Table 1) consisted of mixtures of repeats or were interrupted by nonrepeat motifs (full sequences available in GenBank). Several loci showed moderate to high levels of allelic diversity, to which rare alleles made a substantial contribution, with the result that gene diversities (Table 1) were not particularly high for microsatellites. Allele size distributions were generally consistent with a stepwise mutation model but many alleles also fell outside the expected sizes, possibly due to nontriplet slippage or single base indels. In general, observed heterozygosities (H_O) were similar to overall gene diversity [expected heterozygosity (H_E)], reflecting low genetic structuring

in this sample. However, permutation tests of F_{IS} in FSTAT (Goudet 2001) indicated that at Biston 8 and Biston 13 H_O is significantly smaller than H_E , possibly reflecting the occurrence of null alleles at these two loci (although no nonamplifying null homozygotes were detected). Apparent differences between H_O and H_E at Biston 3 and 5 were not significant and were probably due to small sample sizes.

The development of microsatellite markers has been particularly difficult in some Lepidoptera (Nève & Meglécz 2000). The reasons are varied and not altogether clear but include low frequency in the genome, low polymorphism, high degree of complexity and gene duplication (A. van't Hof, unpublished data). In the present study, low polymorphism and nonspecific amplicons were the main limitations to isolating a larger number of informative microsatellite loci but these are common obstacles in other taxa. There are now several studies demonstrating moderate success in developing dinucleotide and trinucleotide microsatellite markers in butterflies and moths (Flanagan *et al.* 2002

and references therein), suggesting that, while problems may be encountered in some species, the microsatellite approach should not be discounted as an inefficient marker strategy in Lepidoptera.

Acknowledgements

We would like to thank Sally Thomson, Winifred Cross, Paul Brakefield and Rob Aspden for their part in collecting the moth samples, and Sarah Helyar for laboratory assistance. This work was supported by a Nuffield Foundation grant to the late Sir Cyril Clarke, who initiated the longterm study of *Biston betularia* in the Liverpool area.

References

Bloor PA, Barker FS, Watts PC, Noyes HA, Kemp SJ (2001) Microsatellite libraries by enrichment. <http://www.genomics.liv.ac.uk/animal/research/protocols.htm>.

Cook LM (2000) Changing views on melanic moths. *Biology Journal of the Linnean Society*, **69**, 431–441.

Flanagan NS, Blum MJ, Davison A *et al.* (2002) Characterization of microsatellite loci in neotropical *Heliconius* butterflies. *Molecular Ecology Notes*, **2**, 398–401.

Goudet J (2001) *FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices* (Version 2.9.3). <http://www.unil.ch/izea/software/fstat.html>.

Nève G, Meglécz E (2000) Microsatellite frequencies in different taxa. *Trends in Ecology and Evolution*, **15**, 376–377.

Refseth UH, Fangan BM, Jakobsen KS (1997) Hybridization capture of microsatellites directly from genomic DNA. *Electrophoresis*, **18**, 1519–1523.

Rozen S, Skaletsky HJ (1998) *PRIMER3*. http://www-genome.wi.mit.edu/genome_software/other/primer3.html.

Rychlik W (2000) *OLIGO*: primer analysis software. *Molecular Biology Insights*, West Cascade, CO, USA.

Saccheri IJ, Bruford MW (1993) DNA fingerprinting in a butterfly, *Bicyclus anynana* (Satyridae). *Journal of Heredity*, **84**, 195–200.

Sambrook J, Fritsch E, Maniatis T (1989) *Molecular Cloning: a Laboratory Manual*, 2nd edn. Cold Spring Harbor Laboratory Press, New York.