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The ParaHox gene cluster, first described in the cephalochordate
amphioxus (Brooke et al., '98), contains three tandemly arrayed
homeobox genes (Gsx, Xlox, and Cdx) and dates to the base of the
Bilateria (Ferrier and Minguillón, 2003) or earlier (Hui et al., 2008;
Mendivil Ramos et al., 2012). The gene cluster has undergone gene
losses, rearrangements, and duplications in different animal
lineages. The ParaHox genes of bilaterian animals are involved in
several developmental processes, notably in gut and neural
patterning. Thus, endodermal midgut expression has been
described for Xlox genes in vertebrates, amphioxus, echinoderm,
annelids, and molluscs, with functional importance in gut
formation demonstrated for sea urchin (Arnone et al., 2006)
and for the well‐studied vertebrate Xlox gene Pdx1 (Jonsson
et al., '94; Offield et al., '96; Brooke et al., '98). The Cdx (caudal‐
type homeobox) genes are expressed posteriorly in many animals,
and are important for development of the posterior gut and anus,
as well as the posterior neural tube in insects and vertebrates
(Moreno and Morata, '99; Reece‐Hoyes et al., 2002). Gsx (genomic
screen homeobox, also known as Gsh or ind) genes are primarily
involved in brain rather than gut patterning inmammals (Hsieh‐Li
et al., '95; Valerius et al., '95), although expression has been
reported in the endocrine pancreas (Rosanas‐Urgell et al., 2005). In
at least some molluscs and annelids, the Gsx gene is expressed in
the mouth region in addition to some nerve cells (Kulakova
et al., 2008; Hui et al., 2009; Samadi and Steiner, 2010), consistent

with the hypothesis that bilaterian ParaHox genes may have
ancestrally patterned mouth, midgut, and anus (Holland, 2001).
Genome duplication events early in vertebrate evolution resulted

in an increase in thenumber of ParaHoxgenes, such that thehuman
genome has six ParaHox genes at four chromosomal locations. A
cluster of three genes (GSX1, PDX1/IPF1, CDX2) is located at
13q12.1, but there are no other linked pairs or clusters of ParaHox
genes in humans. Instead, three individual genes (GSX2, CDX1,
CDX4) are located at three different genomic locations; analysis of
flankinggenes shows that these are remnants from threedegenerate
ParaHox gene clusters (Fig. 1). Humans have, therefore, lost six
putative ParaHox genes in evolution, but the timing of this loss has
been unclear.

ABSTRACT Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In
coelacanths and cartilaginous fish, an additional ParaHox gene exists—Pdx2—that dates back to the
genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and
flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these
genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations,
revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of
intergenic sequences reveals that some Pdx1 regulatory regions associated with development of
pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non‐
coding elements, and that there is very high sequence conservation between coelacanth species. J.
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A similar complement of ParaHox genes has been found in other
jawed vertebrates examined, with three exceptions identified to
date. First, zebrafish and pufferfish have lost cdx2, but have
duplicates of cdx1 (Mulley et al., 2006). The two cdx1 genes in
teleost fish are a remnant of the additional genome duplication
that occurred in teleost fish evolution, though intriguingly this
implies that duplicates of (at least) gsx1, gsx2, pdx1, and cdx4were
lost, alongside two cdx2 copies. Second, an ancient Pdx2 gene was
recently found in chondrichthyan fish (dogfish and skate),
genomically linked to Gsx2; this implies that Pdx2 was present
in the common ancestor of extant jawed vertebrates (Mulley and
Holland, 2010). Third, and most surprisingly, a Pdx2 gene was also
discovered in the coelacanths, lobe‐finned fish that lie within the
sarcopterygian clade of vertebrates, close to tetrapods (Mulley and
Holland, 2010). The implication is that Pdx2 existed for much of
vertebrate evolution, at least up to the radiation of the
sarcopterygians, and was lost independently in ray‐finned fish
and tetrapods.
The identification of this additional ParaHox gene, Pdx2, in

coelacanths raised the question of whether other ParaHox genes
might have survived for a significant length of time in vertebrate
evolution, to be lost later in tetrapods. Coelacanths are sometimes
referred to as “living fossils,” meaning that they have retained a
relatively unchanged body plan for hundreds of millions of years,
and it would be intriguing if their genome also retained ancient
genes (such as Pdx2) lost in other lineages (Noonan et al., 2004;
Powers and Amemiya, 2004; Amemiya et al., 2010). To investigate
this, we sequenced and assembled the genomic regions flanking
all ParaHox genes in a coelacanth, and their bordering non‐
homeobox genes, to define the limits of each ParaHox gene cluster
or gene cluster remnant. We find a surprising level of sequence
conservation between the extant coelacanth species and demon-
strate the absence of any additional ParaHox genes beyond the

known seven. We also show that known regulatory regions
associated with the Pdx1 gene are older than previously thought
and that the paralogous Pdx1 and Pdx2 genes of coelacanths do
not appear to share regulatory architecture.

RESULTS
We previously reported that coelacanths have retained an
additional ParaHox gene (Pdx2) that has been independently
lost in other bony vertebrate lineages (Mulley and Holland, 2010)
and set out to discover whether they may also have retained
additional members of the Gsx, Xlox and Cdx gene families.
Sequencing and assembly of two overlapping BAC clones from
Indonesian coelacanth yielded a 217,497 bp contiguous sequence
containing the full coding sequences of the ParaHox genes Gsx1,
Pdx1, and Cdx2, plus complete or partial sequences of the flanking
Prhoxnb (ParaHox cluster neighbour) and Flt3 (FMS‐like tyrosine
kinase 3) genes (Fig. 2). A 154,768 bp Pdx2‐containing Indone-
sian coelacanth BAC clone has been described previously (Mulley
and Holland, 2010) and also contains the Pdgfra (Alpha‐type
platelet‐derived growth factor receptor) gene. A fourth ParaHox‐
containing BAC clone of 185,347 bp assembled into six ordered
pieces and contained the Cdx4 and Lnx3 (Ligand of numb protein
X 3) genes. It has been suggested that the ratio of the relative
spacing of genes (Gsx to Xlox, and Xlox to Cdx) is conserved in
chordate ParaHox clusters (Ferrier et al., 2005); we find that this
pattern is broadly conserved in coelacanths (Fig. 3) (see Table S1,
Supplementary information)..
Evidence for ParaHox genes and their genomic neighbours from

these sequenced BAC clones, as well as extensive degenerate PCR
experiments (using a variety of primer combinations and reaction
conditions), plus analysis of preliminary whole genome sequence
information available for the African coelacanth Latimeria
chalumnae, demonstrates that the complement of ParaHox genes

Figure 1. Organisation of ParaHox gene‐containing regions in the human genome. An intact cluster of Gsx, Pdx, and Cdx genes in located on
chromosome13 (cluster A), with other ParaHox genes on the X chromosome (cluster B), chromosome4 (cluster C), and chromosome5 (cluster D).
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in coelacanths is: two members of the Gsx gene family (Gsx1,
Gsx2); two members of the Xlox gene family (Pdx1 and Pdx2) and
three members of the Cdx gene family (Cdx1, Cdx2, Cdx4) (Fig. 2).
We found no evidence for additional ParaHox genes in
coelacanths and PCR‐based analyses have so far failed to identify
any others in other vertebrate groups, including cartilaginous fish
(Mulley and Holland, 2010) and lungfish (Neoceratodus forsteri,
data not shown). We suggest that the situation in coelacanths is
representative of the basal jawed vertebrate condition.
The availability of sequence information for the canonical

ParaHox A cluster (Gsx1, Pdx1, Cdx2) and the Gsx2–Pdx2 cluster
(cluster C) enables comparisons of the conserved non‐coding
(putative regulatory) sequences associated with the paralogous
Pdx genes—something that is desirable given the important role
played by the Pdx1 gene in pancreas development (Jonsson
et al., '94; Offield et al., '96; Stoffers et al., '97; Schwitzgebel
et al., 2003) and in glucose‐responsive regulation of insulin gene
expression (Ohlsson et al., '93), and its relevance to diabetes
(Cockburn et al., 2004; Hani et al., '99; Macfarlane et al., '99).
These comparisons were not previously possible with the
fragmentary data from earlier studies and shed light on the
evolutionary history of pancreas development and insulin
regulation.
We first used mVISTA (Frazer et al., 2004) to compare the

human, Bowfin (Amia calva—a basal ray‐finned fish with an

intact cluster (Mulley et al., 2006)) and African and Indonesian
coelacanth ParaHox A clusters to identify conserved non‐coding
regions of DNA (Fig. 4). This revealed a pattern of conservation
within and around the canonical ParaHox cluster similar to that in
other vertebrates (Mulley et al., 2006). In contrast, no conserved
non‐coding elements were identified between the Coelacanth
Pdx1 and Pdx2 regions, apart from a short region with no
similarity to known Pdx1 enhancer sequences and with high
sequence conservation to other coelacanth BAC clones in
Genbank, suggesting a repetitive element in the Coelacanth
genome. We find no conserved non‐coding elements between the
Pdx2‐containing regions of L. chalumnae and Little Skate
(Leucoraja erinacea); the most highly conserved elements are
close to Gsx2 and also conserved in the human genome (which
lacks Pdx2), suggesting they regulate Gsx2. To assess if the
evolutionary rates of Pdx1 and Pdx2 were unequal, we conducted
relative rate tests. No significant differences were detected (L.
chalumnae P ¼ 0.76808; Scyliorhinus canicula P ¼ 0.54649).
The human and rodent Pdx1 genes have been intensively

studied and a number of regions important for transcriptional
regulation have been identified, some of which are conserved in
other tetrapods (Gerrish et al., 2000, 2004; Boyer et al., 2006;
Fujitani et al., 2006; Miyatsuka et al., 2007;Wiebe et al., 2007). We
analyzed DNA sequence 50 of the coelacanth Pdx1 coding regions,
searching for evidence of Areas I–III (involved in differentiation

Figure 2. Organisation of ParaHox genes in the two extant species of Coelacanth (Lme—Indoenesian coelacanth Latimeria menadoensis,
Lch—African coelacanth Latimeria chalumnae). Lme data is based on sequenced BAC clones and Lch data is derived from genome sequence
information. The complement of ParaHox genes in both species is two Gsx (Gsx1, Gsx2), two Xlox (Pdx1, Pdx2), and three Cdx (Cdx1, Cdx2,
Cdx4). Scale bar is 10 kb.
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Figure 3. Genomic organisation of the ParaHox A cluster in vertebrates. Vertebrate ParaHox A clusters are much larger than the amphioxus
cluster, although the relative spacing of genes is conserved. From top; amphioxus (Branchiostoma floridae), Indonesian coelacanth (Latimeria
menadoensis), frog (Xenopus tropicalis), Mouse (Mus musculus), and human (Homo sapiens).

Figure 4. mVISTA alignments of vertebrate ParaHox regions. Top: Alignment of Indonesian coelacanth (Lme), African coelacanth (Lch), and
Bowfin (Aca) A clusters against the human A cluster; middle—Alignment of Little skate (Ler) and human (Hsa) C clusters against the African
coelacanth C cluster; bottom—Alignment of clusters A and C in African coelacanth (Lch). The conserved non‐coding sequences in the bottom
pane share high sequence similarity with non‐coding sequences in other Coelacanth BAC clones and therefore likely represent a Coelacanth‐
specific repetitive element.
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and maintenance of pancreatic islets (Fujitani et al., 2006)), Area
IV (involved in driving gene expression specifically in b‐cells
(Gerrish et al., 2004)) and the E‐box (involved in b‐cell‐specific
expression of Pdx1 (Melloul et al., 2002)). We find sequence 50 to
coelacanth Pdx1 gene corresponding to Area I (�2,761 to �2,457
in human), Area II (�2,153 to �1,923 in human), and Area III
(�1,879 to�1,600 in human) (see Figs. S1–S3 for alignments). We
found no evidence for Area IV�8,656 to�8,155 (in human) or the
E‐box (�104 in human) in the proximal promoter region.
The extent of sequence conservation between the two extant

coelacanth species was also examined. Analyses of ParaHox genes
for which complete gene sequence was available from both species
(Gsx1, Pdx1, Cdx2, Cdx4) revealed that coding sequences were
100% conserved, whilst introns were typically >99% identical
(Gsx1 intron, 99.8; Pdx1 intron, 99.6; Cdx2 introns, 99.1; Cdx4
introns, 99.8). Furthermore, a larger comparison across the entire
ParaHox A cluster (from the start codon of Gsx1 to the start of
Cdx2, comprising over 120 kb; discounting regions with Ns in L.
chalumnae) revealed >99% similarity. These findings are in line
with those reported elsewhere and show that the ParaHox cluster is
conserved at a similar level to the Hox clusters of the two
coelacanth species, and slightly more highly conserved than some
other genomic regions (see Amemiya et al., 2013; Table S11). This
is an extremely high level of sequence similarity between the two
species, considering the suggestion that they diverged 24–44
million years ago (Inoue et al., 2005). By comparison, New World
monkeys (Platyrrhini) and Old World monkeys and apes
(Catarrhini) diverged �35 million years ago (Schrago and
Russo, 2003) and our analysis of sequence conservation between
human and Common Marmoset (Callithrix jacchus) ParaHox A
clusters (>150 kb) showed 66% sequence similarity.

DISCUSSION
The presence of seven ParaHox genes in coelacanths lends support
to a model for ParaHox gene evolution involving whole genome
duplications (WGDs) early in vertebrate ancestry followed by gene
losses. It suggests that the seven ParaHox gene state found
previously in cartilaginous fish (Mulley and Holland, 2010) and
now also demonstrated in coelacanths was established rapidly
following WGD. Analyses of the genes flanking the coelacanth
ParaHox clusters (see Figs. 1 and 2) identifies several other gene
families that were duplicated via WGD (Platelet‐derived growth
factor receptor, Ligand of Numb Protein X, FMS‐like tyrosine
kinase) and show conserved synteny to human and other
vertebrate ParaHox clusters. The apparent slow rate of molecular
evolution and genomic rearrangement in cartilaginous fish and
coelacanths (Mulley and Holland, 2010; Wang et al., 2009)
suggests that both may be excellent models for the study of events
post‐WGD and later genomic re‐organization in the actino-
pterygian and sarcopterygian lineages.
Comparison of coelacanth ParaHox cluster sequences to known

Pdx1 regulatory regions from mammals (Melloul et al., 2002;

Gerrish et al., 2004; Fujitani et al., 2006) reveals that several
regulatory elements are more ancient than previously thought (see
alignments in Supplementary information). Our results also
suggest that the loss of Area II in birds is potentially unique to
that lineage (or possibly unique to reptiles, as we have also not
been able to find any similarity to this region in the sequence
upstream of the Green Anole (Anolis carolinensis) Pdx1 gene in
the AnoCar2.0 genome assembly). In Areas I–III, the highest level
of sequence conservation was seen in only part of the region
previously defined (Gerrish et al., 2000) and it is possible that these
areas represent core enhancer regions that have been elaborated
on later in tetrapod or mammalian evolution, as has been reported
for lamprey conserved non‐coding sequences (McEwen
et al., 2009). Our findings from the coelacanths may be
particularly useful for future studies of these sites, as many of
the regions that are 100% conserved are around 8–10 bp in length,
similar to the size of most transcription factor binding sites.
Surprisingly, we were unable to find any conserved non‐coding
sequences between the Pdx1 and Pdx2 gene‐containing regions of
coelacanths suggesting that these genes do not share regulatory
architecture. We were also unable to identify any conserved non‐
coding sequences between the Pdx2‐containing regions of
coelacanth and Little skate, suggesting there may have been
differential loss of regulatory elements following WGD. Given the
difficulty in accessing tissue samples from the CITES‐listed
coelacanths, it is unlikely that we will be able to discover the
function of the Pdx2 gene in this lineage. Model cartilaginous fish
such as the Little skate (L. erinacea) or Lesser Spotted Catshark (S.
canicula), both of which have ongoing transcriptome and whole
genome sequencing projects, offer the best chance to determine
the role of the Pdx2 gene in embryos and adults.

MATERIALS AND METHODS

Isolation of Indonesian Coelacanth (Latimeria menadoensis)
ParaHox Genes by Degenerate PCR
Homeobox‐containing fragments of members of the Gsx, Xlox,
and Cdx gene families were isolated from genomic DNA using the
following degenerate PCR primers: for Gsx JMGsx1a: 50‐ATGYCG
MGV TCY TTY YWBGT‐30 (forward); JMGsx1b: 50‐GTN GAY TCN
YTV ATN WTN ARG GA‐30 (nested forward); Gsx3: 50‐TTG CCY
TCY TTY TTG TGC TT‐30 (reverse); GsxSO2: 50‐CAN CKD CGR TTY
TGR AAC CA‐30 (nested reverse); for Cdx JmCdx: 50‐GGN AAR
CAN MGR ACVAAR GA‐30 (forward); CdxSO1: 50‐CTRGARCTG-
GARAARGARTT‐30 (nested forward); CdxSO2: 50‐NVK NVK RTT
YTG RAA CCA‐30 (reverse) and for Pdx JMXloxIc: 50‐GAC GAC
AAC AAG MGN CAN AGR AC‐30 (forward); Xlox2: 50‐CAG CTG
CTV GAG CTV GAG AA‐30 (nested forward); Xlox3: 50‐YTC CTC
YTT YTT CCA CTT CAT‐30 (reverse); XSO2: 50‐GCG NCG RTT YTG
GAA CCA GAT‐30 (nested reverse). The resulting homeobox
fragments (representing two Gsx genes, two Pdx genes, and three
Cdx genes) were digoxigenin (DIG)‐labeled and used to screen a
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high coverage BAC library for Indonesian coelacanth (from the
Genome Resource Centre, Benaroya Research Institute, Seattle,
WA, USA (Danke et al., 2004)). Positive clones were verified by
PCR prior to sequencing and were found to contain Pdx1‐like and
Cdx2‐like gene fragments (Clones 95G3 and 161J8), a Pdx2‐like
fragment (Clone 188I4) and a Cdx4‐like fragment (Clone 52G17).
No Cdx1‐positive clones were found during this library screening,
nor were they identified using a variety of DIG‐labelled homeobox
probes. As previously reported (Mulley and Holland, 2010), clone
188I4 containing Pdx2 (accession HM134895) was sequenced to
9.7� coverage using Sanger sequencing (performed at the
Washington University Genome Centre, St. Louis, MI) and clones
52G17 (Cdx4) and 95G3 (Pdx1) were sequenced in the same way to
10.1� coverage and 6.0� coverage respectively. Clone 161J8 was
sequenced to �40� coverage using Roche 454 GS FLX Titanium
technology (performed at the Centre for Genomic Research,
University of Liverpool, UK). Genes were predicted using BLAST
and GenScan and by alignment to known orthologous genes from
other vertebrates. BAC clone sequences are deposited in GenBank
under accession numbers KC914566–KC914567.

Phylogenetic Analysis
Orthology of genes encoded by the sequenced BAC clones was
confirmed using phylogenetic analysis. Amino acid sequences
were aligned using ClustalX (Larkin et al., 2007) and edited by eye
to maximize contiguity of alignable sequence; maximum
likelihood phylogenetic trees were constructed with PhyML
(Guindon and Gascuel, 2003) using the JTT matrix and 1,000
bootstrap replicates. All nodes had >50% support and trees were
rooted with amphioxus (Branchiostoma floridae) or fly (Drosoph-
ila melanogaster) sequences. The resulting trees are provided
as Supplementary information. Tajima's Relative Rate Test
(Tajima, '93) was conducted on amino acid sequences in MEGA
version 5 (Tamura et al., 2011) using amphioxus Xlox as an
outgroup. All positions containing gaps were eliminated.

Coelacanth Genome Survey and Comparative Genomics
Genomic data for the African coelacanth (L. chalumnae) became
available in late 2011 and was used to fill gaps in our
L. menadoensis BAC clone data. BLAST surveys using
L. menadoensis genes were carried out against the LatCha1
September 2011 v64 assembly at PreEnsembl (http://pre.ensembl.
org) and comparisons for sequence conservation were carried out
using mVISTA (Frazer et al., 2004) and the AVID alignment
program (Bray et al., 2003) using a 100 bp window 70%
conservation level. Additional analyses of conserved non‐coding
sequences and pairwise alignments of L. menadoensis and
L. chalumnae sequences were carried out using ClustalW (Larkin
et al., 2007) implemented in BioEdit (Hall, '99). Common
Marmoset (C. jacchus) genome sequence analyses were based
on CalJac3.2.1 (Release 58, May 2010) data from Ensembl—www.
ensembl.org/Callithrix_jacchus).
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