

1 **Title:**

2 A Critique of the Toxicofuran Hypothesis

3

4 **Authors:**

5 Adam D Hargreaves¹, Abigail S Tucker² and John F Mulley³

6

7 1. Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS,

8 United Kingdom

9 2. Department of Craniofacial Development and Stem Cell Biology, King's College London,

10 Guy's Hospital, London SE1 9RT, United Kingdom

11 3. School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Wales, LL57

12 2UW, United Kingdom

13

14 **Author email addresses:**

15 adam.hargreaves@zoo.ox.ac.uk

16 abigail.tucker@kcl.ac.uk

17 j.mulley@bangor.ac.uk

18

19 **Key words**

20 Toxicofera, reptiles, venom

21

22

23

24

25

26 **Abstract**

27 **Historically, venom was believed to have evolved twice independently in squamate**

28 **reptiles, once in the advanced snakes and once in venomous lizards. The presence of**

29 **putative toxin proteins in the saliva of species usually regarded as non-venomous, and the**

30 **expression of venom gene homologs in their salivary glands, led to the hypothesis that**

31 **venom evolved a single time in reptiles. As the single, early origin of venom is synonymous**

32 **with the Toxicofera clade (Serpentes, Anguimorpha and Iguania), it will subsequently be**

33 **referred to as the Toxicofera hypothesis. This hypothesis has proved to be remarkably**

34 **pervasive for almost a decade, but has until recently never been tested. Here, evidence**

35 **used in support of the Toxicofera hypothesis is reviewed and critically evaluated. Taking**

36 **into account both new and old data, it appears that this hypothesis is unsupported, and**

37 **should be subject to further scrutiny and discussion. Finally, the implications of the**

38 **rejection of the Toxicofera hypothesis are discussed, with respect to the knowledge of**

39 **venom evolution in the Reptilia and also the practical implications of this knowledge.**

40

41 **Introduction**

42 Venomous reptiles have long been the source of fear and fascination in roughly equal measure,

43 not least because of the extensive annual global mortality and morbidity caused by reptile

44 envenomation, particularly in the developing world (Kasturiratne et al. 2008; Harrison et al.

45 2009). Research effort has traditionally focused on the characterisation of venom toxins and

46 the development of treatments to counteract their clinical effects, and so species considered to

47 be medically important have received the most attention (for example, the saw scaled vipers

48 (Wagstaff and Harrison 2006; Wagstaff et al. 2009; Casewell et al. 2009)). As a consequence,

49 the full evolutionary history of venom in the Reptilia has remained unknown, and to this day

50 poses unanswered questions, including fundamental topics such as the origin of venom toxins,

51 what constitutes venom and a venomous animal and even the timing of the evolution of venom
52 itself.

53 Hypotheses concerning the evolution of venom within reptiles have undergone dramatic
54 revision within the last decade, and are currently in a state of flux. Historically, venom within
55 reptiles was believed to have evolved twice independently: once in the Caenophidia (advanced
56 snakes) and once in the Helodermatid lizards (Gila monsters and beaded lizards) (Kochva 1978;
57 Pough et al. 2004) (Figure 1). This belief was mainly due to the distant phylogenetic relatedness
58 of these animals and clear differences in the morphology of their respective venom delivery
59 systems (Kochva 1978; Saint Girons 1988). A more recent, alternative hypothesis (which we
60 refer to as the “Toxicofera hypothesis”) has become widely accepted within (and seemingly far
61 beyond) the toxinological community. The Toxicofera is a clade of squamate reptiles
62 comprising Iguania, Anguimorpha and Serpentes, whose name refers to the presence of venom
63 within at least some members of these groups (Vidal and Hedges 2005). Phylogenetic analysis
64 utilising nine nuclear genes (*α-enolase*, *amelogenin*, *c-mos*, *hoxa13*, *jun*, *mafB*, *rag1*, *rag2* and
65 *r35*) found this clade to be strongly supported (Vidal and Hedges 2005), and this support has
66 been reproduced in subsequent studies (e.g. Pyron et al. 2013). However, phylogenetic
67 relationships within the Toxicofera are unresolved based on nuclear data, although the use of
68 SINEs (short interspersed nuclear elements) has suggested a clustering of snakes with
69 anguimorph lizards (Piskurek et al. 2006) which is also supported by a more recent analysis
70 (Hsiang et al. 2015).

71

72

73 **FIGURE 1**

74 **Figure 1.** Simplified Reptile cladogram. The phylogenetic position of venomous Helodermatid
75 lizards and the Caenophidia (advanced snakes) are indicated. The phylogenetic position of the

76 proposed venomous Toxicofuran ancestor is indicated along with the three proposed
77 punctuated toxin gene recruitment events. Proposed recruited toxin gene families are also
78 shown.

79

80

81 The majority of the roughly 2,500 species of snake are classified within the Caenophidia, a
82 sub-order containing four major lineages: Atractaspidinae; Viperidae (vipers, pit vipers);
83 Elapidae (such as cobras and mambas) and Colubridae (a polyphyletic group which is
84 constantly undergoing taxonomic revision) (Quijada-Mascarenas and Wüster 2009).

85 Approximately 600 species, all belonging to the former three lineages, were traditionally
86 considered to be venomous in that they possessed venom glands surrounded by compressor
87 muscles, tubular fangs at the front of the mouth and are of medical significance to humans
88 (although medical significance to humans is obviously a poor criterion on which to base
89 classification of toxicity). Whilst some members of the Colubridae are opisthoglyphous (rear
90 fanged), they do not generally pose a threat to humans and have historically not been considered
91 to be venomous.

92 Evidence for a wider use of venom within advanced snakes was initially based on proteomic
93 analysis of the saliva of the radiated rat snake (*Coelognathus radiatus*), a snake reliant on
94 constriction for prey capture, where a post-synaptic neurotoxin belonging to the three finger
95 toxin (3Ftx) family was discovered (Fry et al. 2003a). This protein was found to possess the
96 typical ten conserved cysteine residues of elapid 3Ftxs and when functionally tested led to
97 antagonism of nicotinic acetylcholine receptors. This protein was therefore considered to be
98 structurally and functionally homologous to the elapid three finger toxins (Fry et al. 2003a) and
99 phylogenetic analysis showed strong support for the nesting of the rat snake 3Ftx within a clade
100 of previously categorised 3Ftxs (Fry et al. 2003b). On the basis of these results it was suggested

101 that three finger toxins were recruited into the venom repertoire prior to the divergence of the
102 Elapidae and Colubridae (Fry et al. 2003a). Indeed, the analysis of other colubrid “venoms”
103 (Mackessy 2002) added further support that the use of venom in the advanced snakes pre-dated
104 their radiation in the Cenozoic era (Vidal and Hedges 2002). More interestingly, the presence
105 of putative toxin proteins in the saliva of lizard species usually regarded as non-venomous
106 (such as the lace monitor, *Varanus varius*), and the expression of venom gene homologs in
107 their salivary glands, led to the proposed hypothesis that venom evolved a single time in
108 squamate reptiles approximately 170 Mya (Fry et al. 2006), and not twice independently as had
109 been previously believed (Pough et al. 2004; Kardong et al. 2009).

110 The timing of venom gene recruitment events within reptiles has undergone significant
111 modification over the course of subsequent Toxicofera-related studies, with further sampling
112 leading to the detection of an increased number of putative venom genes in a diverse collection
113 of species (Fry et al. 2009; Fry et al. 2010; Fry et al. 2012a; Fry et al. 2013). These findings
114 suggest an increasingly complex view of venom gene recruitment throughout the evolution of
115 the Toxicofera, which has even extended to include the Komodo dragon (*Varanus*
116 *komodoensis*). This species was previously considered to be reliant on oral bacteria (e.g. see
117 Bull et al. 2010) to induce septicaemia in prey items, but is now considered to be venomous
118 (Fry et al. 2009).

119 Here, the foundation and expansion of the Toxicofera hypothesis and the proposed single, early
120 evolution of venom in reptiles are discussed and examined. The assumptions and key
121 shortcomings of the evidence used in support of this hypothesis are reviewed, taking into
122 account more recent findings and novel interpretations.

123 **The Toxicofera hypothesis**

124 The first proposal of the single, early origin of venom in reptiles occurred in 2006 based upon
125 the detection of genes homologous to those previously identified in the venom glands of

126 venomous snakes expressed in the mandibular salivary glands of four Varanid lizards (*Varanus*
127 *acanthurus*, *V. mitchelli*, *V. panoptes rubidus* and *V. varius*) and a single Iguanian (*Pogona*
128 *barbata*) (Fry et al. 2006). Phylogenetic analysis demonstrated that nine toxin families were
129 shared between these non-venomous lizards and advanced snakes: AVIT peptide; B natriuretic
130 peptide; cysteine-rich secretory protein (CRISP); cobra venom factor (which is in fact
131 complement component C3 (Alper and Balavitch 1976)); crotamine; cystatin; kallikrein; nerve
132 growth factor and vespryn. Additionally, a type III phospholipase A₂ (PLA₂) was detected in
133 the mandibular salivary glands of *Varanus varius* (Fry et al. 2006).

134 Subsequent Toxicofera-related studies mainly focused on the inclusion of additional lizard
135 species (Fry et al. 2009; Fry et al. 2010; Fry et al. 2013). A more recent study sequenced cDNA
136 derived from the oral glands of Iguanian lizards and Henophidian snakes using 454
137 pyrosequencing (Fry et al. 2013). The detection of apparent homologs of several Toxicofera
138 genes in these species led to a number of proposed gene recruitment timing events being shifted
139 even earlier in Toxicofera evolution, in some cases by up to 112 million years, and the
140 adoption of a punctuated evolutionary history of toxin recruitment. In this scenario, three
141 rounds of toxin gene recruitment have been proposed to have occurred in the Toxicofera: up to
142 ten at the base of the Toxicofera (cysteine-rich secretory protein (CRISP), crotamine, cystatin,
143 cobra venom factor, kunitz, L-amino acid oxidase, lectin, renin aspartic protease, veficolin,
144 vespryn), six in the ancestor of Serpentes and Anguimorpha (AVIT peptide, epididymal
145 secretory protein, hyaluronidase, kallikrein, nerve growth factor, ribonuclease) and eight
146 (acetylcholinesterase, lipocalin, C-type natriuretic peptide, snake venom metalloproteinase,
147 phosphodiesterase, phospholipase B, vascular endothelial growth factor, waprin) in the
148 common ancestor of the Caenophidia (Fry et al. 2013) (Figure 1).

149 The Toxicofera hypothesis proposes the existence of an early venomous squamate that would
150 have possessed toxin-secreting glands on both the upper (maxillary) and lower (mandibular)

151 jaw (Fry et al. 2006). The venom delivery systems in advanced snakes and lizards are therefore
152 homologous but morphologically distinct derivatives of this primitive system, with snakes
153 retaining the maxillary venom glands and venomous lizards maintaining the mandibular glands
154 (Fry et al. 2006), with the opposing glands being secondarily lost by each lineage. It has been
155 proposed that members of the Iguania (such as the green anole lizard, *Anolis carolinensis*)
156 diverged whilst this venom system was in an incipient stage, and so lack any form of specialised
157 toxin secreting glands. Furthermore, snakes which use alternative prey capture methods such
158 as constriction are proposed to have secondarily lost venomous function (Fry et al. 2006).

159 Alongside the conserved shared expression of homologous genes, the conserved structure of
160 homologous proteins has also been used to support the Toxicofera hypothesis, namely the
161 conserved cysteine structure and functional residues (Fry et al. 2006).

162 Several Toxicofera-related studies have also included functional tests on the mandibular oral
163 secretions of two varanid species, *Varanus komodoensis* and *V. varius* (Fry et al. 2006; Fry et
164 al. 2009). Samples of crude oral secretion and purified natriuretic peptide were injected
165 intravenously into anaesthetised male rats, which resulted in a drop in mean arterial pressure
166 (MAP). Platelet aggregometry was also carried out using purified type III PLA₂ from *V. varius*
167 which showed inhibition of platelet aggregation when tested on human blood samples.

168

169 **Shortcomings of the Toxicofera hypothesis**

170 The Toxicofera hypothesis assumes that shared expression of a gene between what were
171 previously considered non-venomous species and more derived venomous species implies
172 shared toxicity (or at least a shared venomous ancestry) (Fry et al. 2006). It is of course
173 plausible that homologous tissues (e.g. the venom gland and other oral glands) within related
174 species will express similar complements of genes, and therefore presence alone does not
175 provide any evidence of toxicity. Indeed, many of the proposed toxins which have been used

176 to support the Toxicofera have never been functionally characterised. Moreover, the products
177 of several of these genes have never been suggested to be toxic (for example cystatin type E/M
178 (Ritonja et al. 1987)) or have been shown to not be toxic, even up to high doses, through
179 functional tests (for example, acetylcholinesterase (Cousin et al. 1996)). Therefore these genes
180 have been used to support shared ancestral toxicity, without actually functioning as toxins.
181 Additionally, it now seems certain that many of the proposed shared venom toxins within the
182 Toxicofera actually results from the confusion of orthologs and paralogs, where non-toxic
183 relatives of toxin genes have been identified (Hargreaves et al. 2014a). For example, genes
184 encoding complement c3 and nerve growth factor have been shown to have undergone an
185 Elapid-specific gene duplication (Sunagar et al. 2013; Hargreaves et al. 2014a; Hargreaves et
186 al. 2014b) to give rise to the putatively toxic “cobra venom factor” and nerve growth factor b
187 (Hargreaves et al. 2014b). This mis-identification of physiological orthologs as toxin-encoding
188 paralogs has led to the conclusion that all Toxicofera reptiles produce toxins in their oral
189 secretions, and are therefore descended from a common venomous ancestor. In addition, many
190 previous studies (e.g. Casewell et al. 2012) have been based on a flawed assumption – that
191 phylogenetic trees containing monophyletic clades of *reptile sequences* that include a known
192 (or hypothesised) toxin from venomous snakes constitute *venom toxin clades*. The true
193 evolutionary history of these genes (which have duplicated to possibly give rise to toxic
194 versions in *some* species), and these clades (which contain both genes encoding toxic products
195 in *some* species, along with related genes encoding non-toxic products in other species), has
196 therefore been obscured by being labelled as toxins by default. This is further confounded by
197 a lack of data, both for the tissue being studied and also for other tissues and species (the
198 majority of Toxicofera-related studies (Fry et al. 2006; Fry et al. 2010; Fry et al. 2012a) used
199 only “up to 384” individual venom gland cDNA library colonies per species, a minimal amount
200 of sequencing considering the frequently cited complexity of snake venoms (Li et al. 2005b;

201 Kini and Doley 2010; Casewell et al. 2013)). This paucity of data, whilst understandable given
202 the technology and resources of the time, has seemingly led to errors of interpretation, and,
203 possibly more seriously, over-interpretation of results. Indeed, few genes were found expressed
204 in all species surveyed (for example out of nine genes, only Kallikrein was detected expressed
205 in the mandibular salivary gland of all four species of varanid (Fry et al. 2006)). With increased
206 taxon sampling, only Kallikrein and CRISP were detected in all 18 species of lizard sampled
207 (Fry et al. 2010) which included 13 species of varanid. Whilst this may be an artefact of low
208 sequencing depth, the lack of consistent expression should have precluded these genes being
209 used to support a conserved repertoire of “venom” genes across the Toxicofera.
210 Perhaps the most significant issue with the evidence used to support the Toxicofera hypothesis
211 is that all samples used for sequencing were derived from either salivary or venom glands, and
212 no “body” tissues were included with which to compare gene expression. Transcriptomic
213 analysis of solely venom gland is perfectly acceptable for descriptive studies which seek to
214 characterise the transcriptome of this tissue. However, in order to assign a potential toxic role
215 to a gene (and especially to infer its true evolutionary history, or the evolution of the venom
216 repertoire in an entire lineage), sequencing the venom gland alone is insufficient. It has long
217 been known that tissues all express a repertoire of “housekeeping” or maintenance genes (Butte
218 et al. 2001) and as a result the sequencing of the entire venom or salivary gland will result in
219 the identification of genes associated with a diverse range of functions (e.g. protein synthesis,
220 cell-cell signalling and energy metabolism), not to mention that the sample will likely contain
221 traces of other tissues such as muscle and blood. Consequently, genes cannot be inferred to
222 encode toxins simply because they happen to be expressed in the venom or salivary gland.
223 Conservation in the structure of proteins detected in lizard oral secretions has also been used
224 in support of the Toxicofera hypothesis. However, many secreted proteins, particularly
225 members of the same gene family, have a conserved cysteine-rich “scaffold” (Anantharaman

226 et al. 2003). It should not be too surprising that related proteins have similar structures,
227 especially as alterations to this scaffold, or to the conserved residues, would likely result in a
228 disruption of the protein structure and function. Similarity of structure should not necessarily
229 always be considered to reflect shared toxicity. When using the Australian snake venom
230 detection kit, Jelinek et al. (Jelinek et al. 2004) found cross-reactivity between several snake
231 species, most notably the tiger snake (*Notechis scutatus*) and the black-headed python
232 (*Aspidites melanocephalus*). This has been used as evidence that putative toxin genes are
233 translated into proteins in the venom or oral glands of these species, and that these proteins
234 represent relics of an ancestral venom system which has been down-regulated in Henophidians
235 (boas, pythons and several other families of basal snakes) (Fry et al. 2013). However, such
236 cross-reactivity has been observed many years previously, with cross-reactivity demonstrated
237 between colubrid oral secretions and antivenoms raised against African and Australian elapids
238 (Minton and Weinstein 1987). Interestingly, the authors also found some antigenic cross-
239 reactivity between a Henophidian snake (*Epicrates striatus strigilatus*) oral secretion when
240 tested using a polyvalent antivenom raised against three *Dendroaspis* (mamba) species. Some
241 of the responsible antigens were shown to be present in both venom and plasma, whilst some
242 were present only in venom. Therefore, it is likely that some of this cross-reactivity between
243 species is due to antigens present in secretions common to many species, as well as to cross-
244 reaction between related members of protein families and cannot be taken as representative of
245 any shared toxicity.

246 Whilst several Toxicofera-related studies commendably attempted to functionally test the oral
247 secretions of some varanid lizard oral secretions, the results must be interpreted carefully.
248 Purified group III PLA₂ from *V. varius* appears to have caused inhibition of platelet
249 aggregation, although it is unclear why this was tested on human blood instead of the blood of
250 native prey items such as birds or rabbits (Weavers 1989). It is also unclear as to whether

251 physiological concentrations (within a range of concentrations which occur naturally in oral
252 secretions) of this protein were used in this assay or if an increased dosage was required to
253 achieve this inhibition of platelet aggregation.

254 Crude mandibular oral secretion and synthesised natriuretic peptide from *V. varius* and *V.*
255 *komodoensis* caused a drop in mean arterial pressure when injected intravenously into
256 anaesthetised rats (Fry et al. 2006; Fry et al. 2009). However, intravenous (I.V.) administration
257 is an unlikely delivery method in the event of a lizard bite, and the depressor effects of I.V.
258 administration of saliva has been noted in previous experiments (Gibbs 1935; Levy and
259 Appleton 1942). Therefore, physiological effects noted in a controlled laboratory experiment
260 may not be translated in a real life scenario. For crude *V. varius* mandibular secretion, a
261 concentration of 1mg kg⁻¹ was required to cause a drop in blood pressure in an anaesthetised
262 rat (Fry et al. 2006) whilst a decrease in blood pressure was seen at doses above 100 μ g/kg for
263 synthesised natriuretic peptide (from *V. komodoensis*) with 400 μ g/kg required to induce
264 hypotensive collapse (Fry et al. 2009). Conversely, in a similar experiment, 10 μ g/kg of crude
265 Papuan taipan (*Oxyuranus scutellatus canni*) venom caused a complete respiratory and
266 cardiovascular collapse (Crachi et al. 1999). It is safe to say that lizard “venom” is much more
267 inefficient, and coupled with the inefficient delivery method in these species, is it realistic that
268 they will administer sufficient amounts of toxin in a single bite?

269

270 **Casting doubt on the Toxicofera hypothesis**

271 The Toxicofera hypothesis has been widely accepted for almost a decade, and has proved to be
272 pervasive and attractive. However, the downside of these qualities is that it has also avoided
273 scrutiny and testing. There have recently been several studies which have cast doubt on the
274 Toxicofera hypothesis (Hargreaves et al. 2014a; Reyes-Velasco et al. 2015), although their
275 interpretation has led to alternative conclusions. Several phylogenetic analyses incorporating

276 non-venom gland transcriptomic data have shown that non-toxin sequences nest within clades
277 of toxin genes, and it has been acknowledged that such findings provide “...strong evidence
278 for the non-monophyly of Toxicofera toxins” and that “...the results of [these] phylogenetic
279 analyses would strongly refute the key prediction of the ‘SEO’ (single early origin)
280 hypothesis...” (Casewell et al. 2012). Rather than accepting these conclusions, it has instead
281 been proposed that venom gene recruitment may not be one-way, and that genes encoding
282 venom toxins undergo a dynamic to-ing and fro-ing between toxin and physiological protein,
283 whereby a venom toxin may undergo additional duplication, with subsequent recruitment back
284 into a body tissue to fulfil a non-toxic physiological role. However, the more parsimonious
285 hypothesis that these sequences actually represent *reptile* body sequences (which have never
286 been toxins) forming *reptile* clades rather than body sequences nesting within *venom* clades is
287 not considered. Similarly, Koludarov et al. (Koludarov et al. 2012) investigated the oral
288 secretions of the lizard *Abronia graminea* and determined that “the NGF [nerve growth factor]
289 expressed in venom may be the same gene as is used in the body and therefore may be a rare
290 case of a venom protein resulting from a non-duplicated gene.” It is possible that the product
291 of a gene may be used pleiotropically as a toxin (fulfilling a toxic and non-toxic role
292 simultaneously), but unless its expression is elevated in the salivary gland, there would be little
293 evidence to suggest that it was anything more than a non-toxic physiological protein encoded
294 by a housekeeping or maintenance gene.

295 More recent analyses incorporating an increased number of non-venom gland samples has
296 further cast doubt on the Toxicofera hypothesis. A large scale test of the robustness of this
297 hypothesis found that many of the genes used to support the single, early evolution of venom
298 in squamates are in fact expressed in multiple body tissues including the salivary gland of a
299 non-Toxicofera lizard, the leopard gecko (*Eublepharis macularius*) (Hargreaves et al. 2014a).
300 No evidence has been found of either a venom-specific splice variant or significantly elevated

301 expression level in the venom or salivary gland. Therefore, it is likely that these genes are
302 simply encoding maintenance or “housekeeping” proteins, and are expressed in multiple tissues
303 at low levels. Many of these genes were also found expressed in several other body tissues in
304 *Echis coloratus* (Hargreaves et al. 2014b), adding further support that these are housekeeping
305 genes due to their ubiquitous expression pattern. Several of these genes are also only present
306 as a single copy in the genome of this species, and so there is no evidence of duplication and
307 recruitment of a toxic version to the venom gland (Hargreaves et al. 2014a). Indeed, genes
308 homologous to known toxins have been found expressed in the rictal gland, brain, intestine,
309 kidney, testes, spleen, ovary, heart, stomach, liver, blood and muscle of the Burmese python
310 (*Python molurus bivittatus*) and the venom gland, liver, pancreas, kidney, brain and heart of
311 *Bothrops jararaca* (Junqueira-de-Azevedo et al. 2014; Reyes-Velasco et al. 2015). Whilst these
312 results have been interpreted in different ways, they demonstrate that genes which are
313 homologous to putative venom genes are expressed in many different tissues outside of the oral
314 glands, and that sequencing solely the venom or salivary gland without other body tissues to
315 use as a reference for gene expression is not enough. Interestingly, when the genome of the
316 Burmese python was surveyed for genes orthologous to putative toxin genes, only one or two
317 orthologs were detected for each toxin gene family. The authors suggest that the Burmese
318 python is representative of the ancestral state, prior to the expansion of toxin gene families in
319 the Caenophidia (Reyes-Velasco et al. 2015).

320 If the proteins encoded by these genes are not being used to fulfil a venomous function, why
321 are they still being expressed in the oral secretions of these reptiles? Given the metabolic cost
322 of producing venom (McCue 2006) it would be more logical that natural selection would act
323 to end any unnecessary gene expression and protein synthesis. Indeed, this process has been
324 shown to occur in the marbled sea snake, *Aipysurus eydouxii*, following a switch in diet from
325 fish to sedentary fish eggs (Li et al. 2005a; Li et al. 2005b), whereby several toxin genes have

326 become pseudogenized (rendered non-functional via mutation). Why then has this not occurred
327 in a plethora of reptile species which have no use for venomous function? Since many of the
328 proposed toxins secreted by these glands are nothing of the sort, these oral secretions and the
329 proteins they contain must have alternative functions, incorporating aspects of lubrication, pre-
330 digestion and the stimulation of digestive processes and anti-microbial activity (Weinstein et
331 al. 2012).

332 **Glands and fangs**

333 Reptiles possess many salivary glands that secrete into the oral cavity, with a key role in the
334 lubrication of food. Many are mucous in nature, however, some glands also have serous
335 secretions which, in some cases, have become adapted as venom producing glands, as observed
336 in venomous (Helodermatid) lizards, front-fanged snakes and some rear-fanged snakes.

337 In front-fanged snakes (such as elapids and vipers) and rear-fanged snakes, the fang and venom
338 gland develop from a region at the back of the maxillary dental lamina (Vonk et al. 2008). The
339 final position of the fangs is therefore attained by movement of the growing fangs, forward or
340 backwards in the mouth, after initiation. Importantly in these venomous snakes, the venom
341 gland and the fang appear to form from a united primordium that starts as an epithelial
342 thickening below the eye on the upper jaw. This thickening has been called the primitive dental
343 ridge (Martin 1899). In *Vipera palaestinae*, the thickening splits into an anterior gland and
344 more posterior fang, with the venom gland extending first anteriorly before turning posteriorly
345 and branching (Kochva 1963). In contrast to the serous venom gland, the nearby supralabial
346 glands develop from independent placodes and are generally mucous.

347 In the rear-fanged snakes (Colubridae) the fang is associated with the Duvernoy's gland, which
348 appears not to act as a venom gland and has instead been proposed to have an anti-bacterial
349 role in coating dental surfaces (Jansen 1983). Secretion from the Duvernoy's gland in
350 *Thamnophis elegans vagrans* was found to have enhanced anti-bacterial properties when

351 compared to supralabial glands (Jansen 1983). In addition to a similar position of the fang
352 primordium when compared to front-fanged snakes, the fang and venom gland of rear-fanged
353 snakes also develops from a united primordium, as has been described in the opisthoglyph
354 *Telescopus fallax* and aglyph *Thamnophis sirtalis* (Kochva 1965). *Telescopus* has a complete
355 row of maxillary teeth with the fang primordia and gland forming at the posterior end. In
356 contrast to the viperidae the venom gland does not first grow anteriorly before growing
357 posteriorly. The fact that in these different snakes the venom gland and fang initiate from a
358 common primordium that forms at the back of the maxillary dental lamina indicates that these
359 front and rear fangs are homologous structures (see also (Vonk et al. 2008)). Importantly,
360 Duvernoy's glands do not appear to form at all in many colubrids, for example some species
361 of the genus *Elaphe*, genera *Lampropeltis*, *Pituophis*, *Pseuetes*, *Rhinocheilus* and *Spilotes*
362 (Taub 1967). A variety of *Elaphe* species used in this study (although some of these have since
363 been assigned to different genera) have no Duvernoy's gland and their supralabial glands are
364 purely mucous (Taub 1967). In general such snakes without a Duvernoy's gland are
365 constrictors who suffocate their prey before digestion. The lack of large serous glands in these
366 species has been suggested to be due to secondary loss (Underwood and Kochva 1993; Vidal
367 2002). Although this may well be correct in some derived forms it is also possible that the
368 Duvernoy's gland may not have evolved in all snakes, indicating independent evolution of this
369 gland. Supporting this idea, Boidae and other primitive snakes have mainly mucous salivary
370 glands, which are found at a range of positions in the oral cavity (Kochva and Gans 1970) In
371 Boidae, anterior temporal glands composed of serous cells have been described at the back of
372 the maxilla (Taub 1966). Supralabial glands are generally thought of as mucous in most snakes
373 but some Colubrids have serous cells included in the supralabial glands (Taub 1967). Thus
374 whether a gland is mucous or serous is subject to some variation across reptiles and, in keeping
375 with this, Duvenoy's glands can be mucous in part in some Colubridae (Taub 1967). Whether

376 a gland is serous or mucous, therefore, cannot be necessarily used to infer evolutionary
377 relationships.

378 In both front and rear fanged snakes, the fangs are associated with a gland that forms from the
379 same dental primordium as the tooth. These are therefore true dental glands. Any homologous
380 structures would therefore be proposed to share this joint origin. It is therefore important to
381 know whether venom glands in Toxicofuran lizards also develop from a united dental placode.
382 If not, they are unlikely to be homologous, but instead would represent independent adaptations
383 to venom formation in other oral glands. Some oral glands in lizards do indeed appear to
384 develop from a lamina linked to the dental lamina. For example in chameleons the tooth and
385 dental gland appear to share a similar origin (Tucker 2010). However in helodermatids, where
386 venom glands are found on the lower jaw, the glands lie adjacent to the tooth with the duct at
387 a slight distance when viewed in section (Kardong et al. 2009), indicating that the tooth and
388 gland develop from separate placodes. Supporting this view, the ducts have been proposed to
389 run to an opening between the lip and the jaw, rather than to the base of the teeth (Shufeldt
390 1891) and the location of the gland appears more similar to an infralabial gland. From MRI,
391 however, the gland ducts of helodermatids appear to terminate at the base of teeth (Fry et al.,
392 2010), suggesting a closer relationship with the dentition. Further understanding of the anatomy
393 and development of the venom glands of helodermatids is important to be able to ascertain
394 whether they are homologous to those of snakes.

395 The lack of a developmental link between dental glands and teeth in venomous lizards
396 compared to snakes, and the lack of a large serous gland associated with the maxillary dental
397 lamina in primitive snakes and some colubrids strongly suggests that the venom delivery
398 system in snakes and lizards evolved independently. From the presence of Duvernoy's glands
399 in snakes without venom, it would appear that the Duvernoy's gland first evolved as a branch
400 of the forming dental lamina and then was adapted into a venom-producing gland in both front

401 and rear-fanged snakes. A clear understanding of the embryonic development of the venom
402 glands in venomous lizards will be important to clarify such points.

403 **Varanid venom**

404 Many Toxicofera-related studies suggest that lizards belonging to the genus *Varanus* are in fact
405 venomous, in particular the Komodo dragon *V. komodoensis* (Fry et al. 2006; Fry et al. 2009;
406 Fry et al. 2013). A review of the available evidence found it unlikely that the Komodo dragon
407 utilises venom as a prey capture method, instead suggesting that if it did use venom it was used
408 as a pre-digestion method (Arbuckle 2009). Historical field observations have suggested that
409 blood loss due to injury is the main prey capture strategy utilised by Komodo dragons
410 (Auffenberg 1981). Whilst many *Varanus* species have been kept in captivity for many years,
411 there have been almost no reports of any symptoms concurrent with envenomation following
412 a bite. In the original Toxicofera paper (Fry et al. 2006) there are anecdotal reports of bites
413 from three species of *Varanus* which resulted in symptoms such as dizziness and rapid
414 swelling. Most recently, a bite by a Bengal monitor (*Varanus bengalensis*) reportedly caused
415 acute kidney injury to a human patient, which ultimately (and most unfortunately) resulted in
416 death (Vikrant and Verma 2014). However, no positive identification was made of the
417 offending animal, other than the name given by the patient. Perhaps more dubious is that the
418 bite symptoms were more in line with envenoming from a Russell's viper (*Daboia russeli*)
419 (White and Weinstein 2015), a member of the so-called “Big four” and a main cause of
420 mortality due to snakebite in India (Simpson and Norris 2007). Unfortunately no mention is
421 made of the bite wound itself which may aid in distinguishing between a lizard or snake as the
422 culprit. Additionally, a recent bite by a Komodo dragon reportedly resulted in no symptoms of
423 envenomation (Borek and Charlton 2015). Therefore, the status of varanid lizards as venomous
424 is uncertain, particularly when compared to known venomous lizards such as the Gila monster
425 and beaded lizards.

426

427

428 **Conclusions and future directions**

429

430 *Venom evolved multiple times in reptile evolution*

431 Whilst the Toxicofera hypothesis represents a parsimonious explanation of the evolution of
432 venom in reptiles (one character evolving a single time), the inclusion of non-venom-gland
433 derived transcriptomic data in phylogenetic analyses along with the quantification of gene
434 expression would strongly suggest that the Toxicofera hypothesis is unsupported (Hargreaves
435 et al. 2014a). This would prompt a move back to the previous hypothesis that venom has
436 evolved multiple times within squamate reptiles, once in the advanced snakes, once in the
437 helodermatid lizards, and potentially another time in varanid lizards (although more evidence
438 is needed to confirm this). This is in keeping with the large phylogenetic distance between
439 venomous snakes and venomous lizards, the differing morphology of venom delivery systems
440 between these animals (e.g. gland location, teeth/fangs), and the differing uses for their venoms
441 (i.e. snakes predominantly for prey capture and helodermatid lizards for defence).

442

443 *Simplified complexity of reptile venom*

444 The rejection of the Toxicofera hypothesis and the ruling out of many of the genes used to
445 support it as toxins leads to an inescapable conclusion, that snake venom is not as complex as
446 previously suggested (Li et al. 2005b; Kini and Doley 2010; Casewell et al. 2013). A review
447 of venom proteome data from several species (Calvete et al. 2007; Wagstaff et al. 2009; Vonk
448 et al. 2013) shows that snake venom is composed of a relatively small number of gene families
449 encoding a few dozen different proteins, with most extensive diversity found in only one or a
450 few of these families (Calvete 2013; Hargreaves et al. 2014a). Whilst post-translational

451 modifications may prove to play a significant role in generating more extensive diversity from
452 a limited genetic background (Casewell et al. 2014), the idea that snake venom is a “complex
453 cocktail” (Casewell et al. 2013) of hundreds of different proteins encoded by many gene
454 families seems to be unsupported by experimental evidence. The low number of products in
455 snake venom makes perfect sense as (1) a complex proteinaceous mixture would be
456 metabolically expensive to produce and (2) natural selection will act to streamline the venom,
457 tailoring it to the snakes’ prey items. In short, a simple venom is efficient; a complex venom is
458 overkill. The implications of this reduced complexity are significant, particularly for the
459 development of the next generation of antivenom treatments utilising methods such as “string
460 of beads” (Whitton et al. 1993) and “epitope-string” (Casewell et al. 2013). A reduction in the
461 number of likely toxins inherently means a reduction in the number of targets requiring
462 neutralisation by antivenom, and as a consequence the reduced number of components
463 contained in the antivenom would mean a reduction in antigenicity, meaning a reduced chance
464 of adverse reactions to treatment such as anaphylaxis and serum sickness (Nuchprayoon and
465 Garner 1999).

466 From an evolutionary perspective, the reduction in the number of toxins does not detract from
467 the fascination or specialization of venoms, in fact the opposite is true. The occurrence of
468 lineage-specific gene duplications (for example *complement c3* and *nerve growth factor* in
469 Elapids (Sunagar et al. 2013; Hargreaves et al. 2014a; Hargreaves et al. 2014b)) would indicate
470 that these genes may confer some prey-specific effects (as seen in the Mangrove catsnake,
471 *Boiga dendrophilia* (Pawlak et al. 2006)), or may have allowed adaptation to a new ecological
472 niche.

473

474 *The changing definition of venom*

475 The Oxford English dictionary defines venom as “a poisonous substance secreted by animals
476 such as snakes, spiders, and scorpions and typically injected into prey or aggressors by biting
477 and stinging”. A more specific and long-standing definition would be “a complex substance
478 produced in a specialized gland and delivered by an associated specialized apparatus that is
479 deleterious to other organisms in a given dosage and is actively used in the subjugation and/or
480 digestion of prey and/or in defence” (Mebs 2002). More recently, the quest for a catch-all term
481 that encompasses the diverse uses of venom by insects, molluscs, reptiles and mammals has
482 led to increasingly broad definitions of venom, such as “a secretion, produced in a specialised
483 tissue (generally encapsulated in a gland) in one animal and delivered to a target animal through
484 the infliction of a wound (regardless of how tiny it is). A venom must further contain molecules
485 that disrupt normal physiological or biochemical processes so as to facilitate feeding or defence
486 by/of the producing animal” (Fry et al. 2012b). It is perhaps time to discard this quest in favour
487 of more restricted, possibly even lineage-specific, terminology with emphasis on the biological
488 role of the venom to the survival of the animal. As an example, human saliva contains many of
489 the proteins encoded by the same gene families which are also found present in the snake
490 venom proteome, including cystatins, disintegrin-like metalloproteinases, epididymal
491 secretory protein E1, group IIA PLA₂s, β-defensins, and kallikrein (Hu et al. 2005; Guo et al.
492 2006). Human saliva has also been shown to be toxic (Bonilla et al. 1971). However, humans
493 are not considered to be venomous, we do not use these secretions to kill or otherwise
494 incapacitate prey, and so these proteins must fulfil some other biological role, such as pre-
495 digestion and lubrication. Therefore, the presence of proteins homologous to known (or
496 proposed) toxin proteins in oral secretions does not automatically mean that the organism is
497 venomous. Moreover, considering the presence of homologous proteins in the oral secretions
498 of basal snakes as toxins based on their use as toxins in more derived species, without evidence
499 of these proteins showing any functional significance, is an erroneous and premature

500 assumption, which has been stated previously by other authors (Kardong 2012; Weinstein et
501 al. 2012).

502

503 *Future directions*

504 The increased application of second generation DNA sequencing technologies and the
505 integration of multiple types of ‘omic data (genomic, transcriptomic, proteomic) is
506 revolutionising the study of the evolution and composition of venom in reptiles, with
507 implications not only for our understanding of this evolutionary innovation, but also for the
508 treatment of snakebite and development of novel pharmaceuticals. Once the genome to
509 proteome path of toxin expression is completely elucidated, this leaves the fundamentally
510 important question: what do these proteins actually do? Perhaps more pertinent, is the
511 functional property of these proteins relevant to the biological role of the venom and to the
512 survival of the animal? Oral secretions are likely to have several biological roles, such as pre-
513 digestion and lubrication, and so some proteins are likely to fulfil these rather than act as venom
514 toxins. Only with functional characterisation (which can be a long and arduous task,
515 particularly compared to the “one-shot” nature of high throughput sequencing) of these putative
516 toxins can a true role be assigned to them. Moreover, functional testing of proteins should be
517 performed at physiological concentrations on native prey items.

518

519

520 **References**

521

522 Alper CA, Balavitch D. Cobra venom factor: evidence for its being altered cobra C3 (the third
523 component of complement). Science 1976; 191:1275-1276.

524

525 Anantharaman V, Aravind L, Koonin EV. Emergence of diverse biochemical activities in
526 evolutionarily conserved structural scaffolds of proteins. *Curr Opin Chem Biol* 2003; 7:12-
527 20.

528

529 Arbuckle K. Ecological function of venom in *Varanus*, with a compilation of dietary records
530 from the literature. *Biawak* 2009; 3:46-56.

531

532 Auffenberg W. The behavioral ecology of the Komodo monitor. Gainesville: University of
533 Florida press, 1981.

534

535 Bonilla CA, Fiero MK, Seifert W. Comparative biochemistry and pharmacology of salivary
536 gland secretions: I. Electrophoretic analysis of the proteins in the secretions from human
537 parotid and reptilian parotid (Duvernoy's) glands. *Journal of Chromatography A* 1971;
538 56:368-372.

539

540 Borek HA, Charlton NP. How not to train your dragon: a case of a Komodo dragon bite.
541 *Wilderness Environ Med* 2015; In press.

542

543 Bull J, Jessop TS, Whiteley M. Deathly drool: evolutionary and ecological basis of septic
544 bacteria in Komodo dragon mouths. *PLoS One* 2010; 5:e11097.

545

546 Butte AJ, Dzau VJ, Glueck SB. Further defining housekeeping, or "maintenance," genes
547 Focus on "A compendium of gene expression in normal human tissues". *Physiol Genomics*
548 2001; 7:95-96.

549

550 Calvete JJ. Snake venomics: from the inventory of toxins to biology. Toxicon 2013; 75:44-
551 62.

552

553 Calvete JJ, Escolano J, Sanz L. Snake venomics of *Bitis* species reveals large intragenus
554 venom toxin composition variation: application to taxonomy of congeneric taxa. Journal of
555 Proteome Research 2007; 6:2732-2745.

556

557 Casewell NR, Huttley GA, Wüster W. Dynamic evolution of venom proteins in squamate
558 reptiles. Nature Communications 2012; 3:1066.

559

560 Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the
561 evolutionary novelty of venoms. Trends in Ecology & Evolution 2013; 28:219-229.

562

563 Casewell NR, Harrison RA, Wuster W, Wagstaff SC. Comparative venom gland
564 transcriptome surveys of the saw-scaled vipers (Viperidae: *Echis*) reveal substantial intra-
565 family gene diversity and novel venom transcripts. BMC Genomics 2009; 10:564-2164-10-
566 564.

567

568 Casewell NR, Wagstaff SC, Wuster W, Cook DA, Bolton FM, King SI, Pla D, Sanz L,
569 Calvete JJ, Harrison RA. Medically important differences in snake venom composition are
570 dictated by distinct postgenomic mechanisms. Proc Natl Acad Sci U S A 2014; 111:9205-
571 9210.

572

573 Cousin X, Crémion C, Grassi J, Méflah K, Cornu G, Saliou B, Bon S, Massoulié J, Bon C.

574 Acetylcholinesterase from *Bungarus* venom: a monomeric species. FEBS Lett 1996;

575 387:196-200.

576

577 Crachi MT, Hammer LW, Hodgson WC. A pharmacological examination of venom from the

578 Papuan taipan:(*Oxyuranus scutellatus canni*). Toxicon 1999; 37:1721-1734.

579

580 Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney A. Molecular

581 evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 2003b;

582 57:110-129.

583

584 Fry BG, Scheib H, Junqueira de Azevedo ILM, Silva DA, Casewell NR. Novel transcripts in

585 the maxillary venom glands of advanced snakes. Toxicon 2012a; 59:696-708.

586

587 Fry BG, Casewell NR, Wüster W, Vidal N, Young B, Jackson TN. The structural and

588 functional diversification of the Toxicofera reptile venom system. Toxicon 2012b; 60:434-

589 448.

590

591 Fry BG, Lumsden NG, Wüster W, Wickramaratna JC, Hodgson WC, Kini RM. Isolation of a

592 neurotoxin (α -colubritoxin) from a nonvenomous colubrid: evidence for early origin of

593 venom in snakes. J Mol Evol 2003a; 57:446-452.

594

595 Fry BG, Vidal N, Norman JA, Vonk FJ, Scheib H, Ramjan SR, Kuruppu S, Fung K, Hedges

596 SB, Richardson MK. Early evolution of the venom system in lizards and snakes. Nature

597 2006; 439:584-588.

598

599 Fry BG, Undheim EA, Ali SA, Jackson TN, Debono J, Scheib H, Ruder T, Morgenstern D,
600 Cadwallader L, Whitehead D et al. Squeezers and leaf-cutters: differential diversification and
601 degeneration of the venom system in Toxicofuran reptiles. Mol Cell Proteomics 2013;
602 12:1881-1899.

603

604 Fry BG, Winter K, Norman JA, Roelants K, Nabuurs RJ, van Osch MJ, Teeuwisse WM, van
605 der Weerd L, McNaughtan JE, Kwok HF et al. Functional and structural diversification of the
606 Anguimorpha lizard venom system. Mol Cell Proteomics 2010; 9:2369-2390.

607

608 Fry BG, Wroe S, Teeuwisse W, van Osch MJ, Moreno K, Ingle J, McHenry C, Ferrara T,
609 Clausen P, Scheib H et al. A central role for venom in predation by *Varanus komodoensis*
610 (Komodo Dragon) and the extinct giant *Varanus (Megalania) priscus*. Proc Natl Acad Sci U
611 S A 2009; 106:8969-8974.

612

613 Gibbs O. On the alleged occurrence of acetylcholine in the saliva. J Physiol 1935; 84:33-40.

614

615 Guo T, Rudnick PA, Wang W, Lee CS, DeVoe DL, Balgley BM. Characterization of the
616 human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid
617 chromatography coupled with ESI-tandem MS. Journal of Proteome Research 2006; 5:1469-
618 1478.

619

620 Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative
621 transcriptomics casts doubt on the single, early evolution of the reptile venom system.
622 Toxicon 2014a; 92:140-156.

623

624 Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-
625 gene duplication and the origin and evolution of snake venom toxins. *Genome Biol Evol*
626 2014b; 6:2088-2095.

627

628 Harrison RA, Hargreaves A, Wagstaff SC, Faragher B, Laloo DG. Snake envenoming: a
629 disease of poverty. *PLoS Neglected Tropical Diseases* 2009; 3:e569.

630

631 Hsiang AY, Field DJ, Webster TH, Behlke ADB, Davis MB, Racicot RA, Gauthier JA. The
632 origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes
633 using genomics, phenomics, and the fossil record. *BMC Evolutionary Biology* 2015;15:87.

634

635 Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, Wong DT. Large-scale
636 identification of proteins in human salivary proteome by liquid chromatography/mass
637 spectrometry and two-dimensional gel electrophoresis-mass spectrometry. *Proteomics* 2005;
638 5:1714-1728.

639

640 Jansen DW. A possible function of the secretion of Duvernoy's gland. *Copeia* 1983;
641 1983:262-264.

642

643 Jelinek GA, Tweed C, Lynch D, Celenza T, Bush B, Michalopoulos N. Cross reactivity
644 between venomous, mildly venomous, and non-venomous snake venoms with the
645 Commonwealth Serum Laboratories Venom Detection Kit. *Emerg Med* 2004; 16:459-464.

646

647

648 Junqueira-de-Azevedo ILM, Bastos CMV, Ho PL, Luna MS, Yamanouye N, Casewell NR.

649 Venom-related transcripts from *Bothrops jararaca* tissues provide novel molecular insights

650 into the production and evolution of snake venom. *Mol Biol Evol* 2014; 32: 754-766.

651

652 Kardong KV. Replies to Fry et al. (*Toxicon* 2012, 60/4, 434–448). Part B. Properties and

653 biological roles of squamate oral products: The “venomous lifestyle” and preadaptation.

654 *Toxicon* 2012; 60:964-966.

655

656 Kardong K, Weinstein S, Smith T. Reptile venom glands: form, function, and future. In:

657 Mackessy S, editor. *Handbook of Venoms and Toxins of Reptiles*. CRC press; 2009.

658

659 Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A,

660 Premaratna R, Savioli L, Lalloo DG, de Silva HJ. The global burden of snakebite: a literature

661 analysis and modelling based on regional estimates of envenoming and deaths. *PLoS*

662 *Medicine* 2008; 5:e218.

663

664 Kini RM, Doley R. Structure, function and evolution of three-finger toxins: mini proteins

665 with multiple targets. *Toxicon* 2010; 56:855-867.

666

667 Kochva E. Development of the venom gland and trigeminal muscles in *Vipera palaestinae*.

668 *Cells Tissues Organs* 1963; 52:49-89.

669

670 Kochva E. Oral glands of the Reptilia. *Biology of the Reptilia* 1978; 8:43-161.

671

672 Kochva E. The development of the venom gland in the opisthoglyph snake *Telescopus fallax*
673 with remarks on *Thamnophis sirtalis* (Colubridae, Reptilia). *Copeia* 1965; 1965:147-154.

674

675 Kochva E, Gans C. Salivary glands of snakes. *Clin Toxicol* 1970; 3:363-387.

676

677 Koludarov I, Sunagar K, Undheim EA, Jackson TN, Ruder T, Whitehead D, Saucedo AC,
678 Mora GR, Alagon AC, King G. Structural and molecular diversification of the Anguimorpha
679 lizard mandibular venom gland system in the arboreal species *Abronia graminea*. *J Mol Evol*
680 2012; 75:168-183.

681

682 Levy B, Appleton J. Effect of saliva on capillary permeability. *J Dent Res* 1942; 21:505-508.

683

684 Li M, Fry B, Kini RM. Eggs-only diet: its implications for the toxin profile changes and
685 ecology of the marbled sea snake (*Aipysurus eydouxii*). *J Mol Evol* 2005a; 60:81-89.

686

687 Li M, Fry BG, Kini RM. Putting the brakes on snake venom evolution: the unique molecular
688 evolutionary patterns of *Aipysurus eydouxii* (Marbled sea snake) phospholipase A₂ toxins.
689 *Mol Biol Evol* 2005b; 22:934-941.

690

691 Mackessy SP. Biochemistry and pharmacology of colubrid snake venoms. *Toxin Reviews*
692 2002; 21:43-83.

693

694 Martin H.. Étude de l'appareil glandulaire venimeux chez un embryon de *Vipera aspis*. *Bull*
695 *Soc Zool Fr* 1899; 24:106–116.

696

697 McCue MD. Cost of producing venom in three North American pitviper species. Copeia
698 2006; 2006:818-825.

699

700 Mebs D. 2002. Venomous and poisonous animals: a handbook for biologists, toxicologists
701 and toxinologists, physicians and pharmacists. CRC Press Medpharm, Stuttgart-Boca Raton.

702 Minton SA, Weinstein SA. Colubrid snake venoms: immunologic relationships,
703 electrophoretic patterns. Copeia 1987; 1987:993-1000.

704

705 Nuchprayoon I, Garner P. Interventions for preventing reactions to snake antivenom. The
706 Cochrane Library 1999; 4.

707

708 Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D,
709 Menez R, Stura E, Menez A et al. . Denmotoxin, a three-finger toxin from the colubrid snake
710 *Boiga dendrophila* (Mangrove Catsnake) with bird-specific activity. J Biol Chem 2006;
711 281:29030-29041.

712

713 Piskurek O, Austin CC, Okada N. Sauria SINEs: novel short interspersed retroposable
714 elements that are widespread in reptile genomes. J Mol Evol 2006; 62:630-644.

715

716 Pough F, Andrews R, Cadle J, Crump M, Savitzky A, Wells K. Herpetology; 2004, 3rd Edn.

717 Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata,
718 including 4161 species of lizards and snakes. BMC Evol Biol 2013; 13:93-2148-13-93.

719

720 Quijada-Mascarenas A, Wüster W. Recent advances in venomous snake systematics. In:
721 Mackessy, S, editor. Handbook of Venoms and Toxins of Reptiles. CRC press; 2009.

722

723 Reyes-Velasco J, Card DC, Andrew AL, Shaney KJ, Adams RH, Schield DR, Casewell NR,
724 Mackessy SP, Castoe TA. Expression of venom gene homologs in diverse python tissues
725 suggests a new model for the evolution of snake venom. Mol Biol Evol 2015; 32:173-183.

726

727 Ritonja A, Evans HJ, Machleidt W, Barrett AJ. Amino acid sequence of a cystatin from
728 venom of the African puff adder (*Bitis arietans*). Biochem J 1987; 246:799-802.

729

730 Saintgirons H. The cephalic exocrine glands of reptiles. 1. Anatomical and histological data.
731 Annales des Sciences Naturelles-Zoologie et Biologie Animale 1988; 9:221-255.

732

733 Shufeldt R. The poison apparatus of the *Heloderma*. Nature 1891; 43:514-515.

734

735 Simpson ID, Norris RL. Snakes of medical importance in India: is the concept of the “Big 4”
736 still relevant and useful? Wilderness Environ Med 2007; 18:2-9.

737

738 Sunagar K, Fry BG, Jackson TN, Casewell NR, Undheim EA, Vidal N, Ali SA, King GF,
739 Vasudevan K, Vasconcelos V. Molecular Evolution of Vertebrate Neurotrophins: Co-Option
740 of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom
741 Arsenal. PloS One 2013; 8:e81827.

742

743 Taub AM. Comparative histological studies on Duvernoy's gland of colubrid snakes. Bulletin
744 of the AMNH 1967; v. 138, article 1.

745

746 Taub AM. Ophidian cephalic glands. J Morphol 1966; 118:529-541.

747 Tucker AS. Salivary gland adaptations: modification of the glands for novel uses. *Front Oral*
748 *Biol* 2010; 14:21-31.

749

750 Underwood G, Kochva E. On the affinities of the burrowing asps *Atractaspis* (Serpentes:
751 Atractaspididae). *Zool J Linn Soc* 1993; 107:3-64.

752

753 Vidal N. Colubroid systematics: evidence for an early appearance of the venom apparatus
754 followed by extensive evolutionary tinkering. *Toxin Reviews* 2002; 21:21-41.

755

756 Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and
757 amphisbaenians) inferred from nine nuclear protein-coding genes. *Comptes Rendus Biologies*
758 2005; 328:1000-1008.

759

760 Vidal N, Hedges SB. Higher-level relationships of Caenophidian snakes inferred from four
761 nuclear and mitochondrial genes. *Comptes Rendus Biologies* 2002; 325:987-995.

762

763 Vikrant S, Verma BS. Monitor lizard bite-induced acute kidney injury—a case report. *Renal*
764 *failure* 2014; 33:444-446.

765

766 Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MA, Vanderschoot K, van den Berge
767 I, van Atten M, Burgerhout E, Beck A. Evolutionary origin and development of snake fangs.
768 *Nature* 2008; 454:630-633.

769

770 Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp
771 HM, Vos RA, Guerreiro I, Calvete JJ et al. The king cobra genome reveals dynamic gene

772 evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A 2013;
773 110:20651-20656.

774

775 Wagstaff SC, Harrison RA. Venom gland EST analysis of the saw-scaled viper, *Echis*
776 *ocellatus*, reveals novel $\alpha 9 \beta 1$ integrin-binding motifs in venom metalloproteinases and a new
777 group of putative toxins, renin-like aspartic proteases. Gene 2006; 377:21-32.

778

779 Wagstaff SC, Sanz L, Juárez P, Harrison RA, Calvete JJ. Combined snake venomics and
780 venom gland transcriptomic analysis of the ocellated carpet viper, *Echis ocellatus*. Journal of
781 Proteomics 2009; 71:609-623.

782

783 Weavers BW. Diet of the Lace Monitor Lizard (*Varanus vokus*) in south-eastern Australia.
784 Aust Zool 1989; 25:83-85.

785

786 Weinstein SA, Keyler DE, White J. Replies to Fry et al. (Toxicon 2012, 60/4, 434–448). Part
787 A. Analyses of squamate reptile oral glands and their products: A call for caution in formal
788 assignment of terminology designating biological function. Toxicon 2012; 60:954-963.

789

790 White J, Weinstein SA. Reply to Vikrant and Verma about "Monitor Lizard Envenoming".
791 Renal Failure 2015; In press.

792

793 Whitton JL, Sheng N, Oldstone MB, McKee TA. A "string-of-beads" vaccine, comprising
794 linked minigenes, confers protection from lethal-dose virus challenge. J Virol 1993; 67:348-
795 352.