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Abstract

Historically, venom was believed to have evolved twice independently in squamate
reptiles, once in the advanced snakes and once in venomous lizards. The presence of
putative toxin proteins in the saliva of species usually regarded as non-venomous, and the
expression of venom gene homologs in their salivary glands, led to the hypothesis that
venom evolved a single time in reptiles. As the single, early origin of venom is synonymous
with the Toxicofera clade (Serpentes, Anguimorpha and Iguania), it will subsequently be
referred to as the Toxicofera hypothesis. This hypothesis has proved to be remarkably
pervasive for almost a decade, but has until recently never been tested. Here, evidence
used in support of the Toxicofera hypothesis is reviewed and critically evaluated. Taking
into account both new and old data, it appears that this hypothesis is unsupported, and
should be subject to further scrutiny and discussion. Finally, the implications of the
rejection of the Toxicofera hypothesis are discussed, with respect to the knowledge of

venom evolution in the Reptilia and also the practical implications of this knowledge.

Introduction

VVenomous reptiles have long been the source of fear and fascination in roughly equal measure,
not least because of the extensive annual global mortality and morbidity caused by reptile
envenomation, particularly in the developing world (Kasturiratne et al. 2008; Harrison et al.
2009). Research effort has traditionally focused on the characterisation of venom toxins and
the development of treatments to counteract their clinical effects, and so species considered to
be medically important have received the most attention (for example, the saw scaled vipers
(Wagstaff and Harrison 2006; Wagstaff et al. 2009; Casewell et al. 2009)). As a consequence,
the full evolutionary history of venom in the Reptilia has remained unknown, and to this day

poses unanswered questions, including fundamental topics such as the origin of venom toxins,
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what constitutes venom and a venomous animal and even the timing of the evolution of venom
itself.

Hypotheses concerning the evolution of venom within reptiles have undergone dramatic
revision within the last decade, and are currently in a state of flux. Historically, venom within
reptiles was believed to have evolved twice independently: once in the Caenophidia (advanced
snakes) and once in the Helodermatid lizards (Gila monsters and beaded lizards) (Kochva 1978;
Pough et al. 2004) (Figure 1). This belief was mainly due to the distant phylogenetic relatedness
of these animals and clear differences in the morphology of their respective venom delivery
systems (Kochva 1978; Saint Girons 1988). A more recent, alternative hypothesis (which we
refer to as the “Toxicofera hypothesis™) has become widely accepted within (and seemingly far
beyond) the toxinological community. The Toxicofera is a clade of squamate reptiles
comprising Iguania, Anguimorpha and Serpentes, whose name refers to the presence of venom
within at least some members of these groups (Vidal and Hedges 2005). Phylogenetic analysis
utilising nine nuclear genes (a-enolase, amelogenin, c-mos, hoxal3, jun, mafb, ragl, rag2 and
r35) found this clade to be strongly supported (Vidal and Hedges 2005), and this support has
been reproduced in subsequent studies (e.g. Pyron et al. 2013). However, phylogenetic
relationships within the Toxicofera are unresolved based on nuclear data, although the use of
SINEs (short interspersed nuclear elements) has suggested a clustering of snakes with
anguimorph lizards (Piskurek et al. 2006) which is also supported by a more recent analysis

(Hsiang et al. 2015).

FIGURE 1
Figure 1. Simplified Reptile cladogram. The phylogenetic position of venomous Helodermatid

lizards and the Caenophidia (advanced snakes) are indicated. The phylogenetic position of the
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proposed venomous Toxicoferan ancestor is indicated along with the three proposed
punctuated toxin gene recruitment events. Proposed recruited toxin gene families are also

shown.

The majority of the roughly 2,500 species of snake are classified within the Caenophidia, a
sub-order containing four major lineages: Atractaspidinae; Viperidae (vipers, pit vipers);
Elapidae (such as cobras and mambas) and Colubridae (a polyphyletic group which is
constantly undergoing taxonomic revision) (Quijada-Mascarenas and Wouster 2009).
Approximately 600 species, all belonging to the former three lineages, were traditionally
considered to be venomous in that they possessed venom glands surrounded by compressor
muscles, tubular fangs at the front of the mouth and are of medical significance to humans
(although medical significance to humans is obviously a poor criterion on which to base
classification of toxicity). Whilst some members of the Colubridae are opisthoglyphous (rear
fanged), they do not generally pose a threat to humans and have historically not been considered
to be venomous.

Evidence for a wider use of venom within advanced snakes was initially based on proteomic
analysis of the saliva of the radiated rat snake (Coelognathus radiatus), a snake reliant on
constriction for prey capture, where a post-synaptic neurotoxin belonging to the three finger
toxin (3Ftx) family was discovered (Fry et al. 2003a). This protein was found to possess the
typical ten conserved cysteine residues of elapid 3Ftxs and when functionally tested led to
antagonism of nicotinic acetylcholine receptors. This protein was therefore considered to be
structurally and functionally homologous to the elapid three finger toxins (Fry et al. 2003a) and
phylogenetic analysis showed strong support for the nesting of the rat snake 3Ftx within a clade

of previously categorised 3Ftxs (Fry et al. 2003b). On the basis of these results it was suggested
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that three finger toxins were recruited into the venom repertoire prior to the divergence of the
Elapidae and Colubridae (Fry et al. 2003a). Indeed, the analysis of other colubrid “venoms”
(Mackessy 2002) added further support that the use of venom in the advanced snakes pre-dated
their radiation in the Cenozoic era (Vidal and Hedges 2002). More interestingly, the presence
of putative toxin proteins in the saliva of lizard species usually regarded as non-venomous
(such as the lace monitor, Varanus varius), and the expression of venom gene homologs in
their salivary glands, led to the proposed hypothesis that venom evolved a single time in
squamate reptiles approximately 170 Mya (Fry et al. 2006), and not twice independently as had
been previously believed (Pough et al. 2004; Kardong et al. 2009).

The timing of venom gene recruitment events within reptiles has undergone significant
modification over the course of subsequent Toxicofera-related studies, with further sampling
leading to the detection of an increased number of putative venom genes in a diverse collection
of species (Fry et al. 2009; Fry et al. 2010; Fry et al. 2012a; Fry et al. 2013). These findings
suggest an increasingly complex view of venom gene recruitment throughout the evolution of
the Toxicofera, which has even extended to include the Komodo dragon (Varanus
komodoensis). This species was previously considered to be reliant on oral bacteria (e.g. see
Bull et al. 2010) to induce septicaemia in prey items, but is now considered to be venomous
(Fry et al. 2009).

Here, the foundation and expansion of the Toxicofera hypothesis and the proposed single, early
evolution of venom in reptiles are discussed and examined. The assumptions and key
shortcomings of the evidence used in support of this hypothesis are reviewed, taking into
account more recent findings and novel interpretations.

The Toxicofera hypothesis

The first proposal of the single, early origin of venom in reptiles occurred in 2006 based upon

the detection of genes homologous to those previously identified in the venom glands of
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venomous snakes expressed in the mandibular salivary glands of four Varanid lizards (Varanus
acanthurus, V. mitchelli, V. panoptes rubidus and V. varius) and a single Iguanian (Pogona
barbata) (Fry et al. 2006). Phylogenetic analysis demonstrated that nine toxin families were
shared between these non-venomous lizards and advanced snakes: AVIT peptide; B natriuretic
peptide; cysteine-rich secretory protein (CRISP); cobra venom factor (which is in fact
complement component C3 (Alper and Balavitch 1976)); crotamine; cystatin; kallikrein; nerve
growth factor and vespryn. Additionally, a type 111 phospholipase A> (PLA2) was detected in
the mandibular salivary glands of Varanus varius (Fry et al. 2006).

Subsequent Toxicofera-related studies mainly focused on the inclusion of additional lizard
species (Fry et al. 2009; Fry et al. 2010; Fry et al. 2013). A more recent study sequenced cDNA
derived from the oral glands of Iguanian lizards and Henophidian snakes using 454
pyrosequencing (Fry et al. 2013). The detection of apparent homologs of several Toxicoferan
genes in these species led to a number of proposed gene recruitment timing events being shifted
even earlier in Toxicoferan evolution, in some cases by up to 112 million years, and the
adoption of a punctuated evolutionary history of toxin recruitment. In this scenario, three
rounds of toxin gene recruitment have been proposed to have occurred in the Toxicofera: up to
ten at the base of the Toxicofera (cysteine-rich secretory protein (CRISP), crotamine, cystatin,
cobra venom factor, kunitz, L-amino acid oxidase, lectin, renin aspartic protease, veficolin,
vespryn), six in the ancestor of Serpentes and Anguimorpha (AVIT peptide, epididymal
secretory protein, hyaluronidase, kallikrein, nerve growth factor, ribonuclease) and eight
(acetylcholinesterase, lipocalin, C-type natriuretic peptide, snake venom metalloproteinase,
phosphodiesterase, phospholipase B, vascular endothelial growth factor, waprin) in the
common ancestor of the Caenophidia (Fry et al. 2013) (Figure 1).

The Toxicofera hypothesis proposes the existence of an early venomous squamate that would

have possessed toxin-secreting glands on both the upper (maxillary) and lower (mandibular)
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jaw (Fry et al. 2006). The venom delivery systems in advanced snakes and lizards are therefore
homologous but morphologically distinct derivatives of this primitive system, with snakes
retaining the maxillary venom glands and venomous lizards maintaining the mandibular glands
(Fry et al. 2006), with the opposing glands being secondarily lost by each lineage. It has been
proposed that members of the Iguania (such as the green anole lizard, Anolis carolinensis)
diverged whilst this venom system was in an incipient stage, and so lack any form of specialised
toxin secreting glands. Furthermore, snakes which use alternative prey capture methods such
as constriction are proposed to have secondarily lost venomous function (Fry et al. 2006).
Alongside the conserved shared expression of homologous genes, the conserved structure of
homologous proteins has also been used to support the Toxicofera hypothesis, namely the
conserved cysteine structure and functional residues (Fry et al. 2006).

Several Toxicofera-related studies have also included functional tests on the mandibular oral
secretions of two varanid species, Varanus komodoensis and V. varius (Fry et al. 2006; Fry et
al. 2009). Samples of crude oral secretion and purified natriuretic peptide were injected
intravenously into anaesthetised male rats, which resulted in a drop in mean arterial pressure
(MAP). Platelet aggregometry was also carried out using purified type 111 PLA; from V. varius

which showed inhibition of platelet aggregation when tested on human blood samples.

Shortcomings of the Toxicofera hypothesis

The Toxicofera hypothesis assumes that shared expression of a gene between what were
previously considered non-venomous species and more derived venomous species implies
shared toxicity (or at least a shared venomous ancestry) (Fry et al. 2006). It is of course
plausible that homologous tissues (e.g. the venom gland and other oral glands) within related
species will express similar complements of genes, and therefore presence alone does not

provide any evidence of toxicity. Indeed, many of the proposed toxins which have been used
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to support the Toxicofera have never been functionally characterised. Moreover, the products
of several of these genes have never been suggested to be toxic (for example cystatin type E/M
(Ritonja et al. 1987)) or have been shown to not be toxic, even up to high doses, through
functional tests (for example, acetylcholinesterase (Cousin et al. 1996)). Therefore these genes
have been used to support shared ancestral toxicity, without actually functioning as toxins.
Additionally, it now seems certain that many of the proposed shared venom toxins within the
Toxicofera actually results from the confusion of orthologs and paralogs, where non-toxic
relatives of toxin genes have been identified (Hargreaves et al. 2014a). For example, genes
encoding complement ¢3 and nerve growth factor have been shown to have undergone an
Elapid-specific gene duplication (Sunagar et al. 2013; Hargreaves et al. 2014a; Hargreaves et
al. 2014b) to give rise to the putatively toxic “cobra venom factor” and nerve growth factor b
(Hargreaves et al. 2014b). This mis-identification of physiological orthologs as toxin-encoding
paralogs has led to the conclusion that all Toxicoferan reptiles produce toxins in their oral
secretions, and are therefore descended from a common venomous ancestor. In addition, many
previous studies (e.g. Casewell et al. 2012) have been based on a flawed assumption — that
phylogenetic trees containing monophyletic clades of reptile sequences that include a known
(or hypothesised) toxin from venomous snakes constitute venom toxin clades. The true
evolutionary history of these genes (which have duplicated to possibly give rise to toxic
versions in some species), and these clades (which contain both genes encoding toxic products
in some species, along with related genes encoding non-toxic products in other species), has
therefore been obscured by being labelled as toxins by default. This is further confounded by
a lack of data, both for the tissue being studied and also for other tissues and species (the
majority of Toxicofera-related studies (Fry et al. 2006; Fry et al. 2010; Fry et al. 2012a) used
only “up to 384” individual venom gland cDNA library colonies per species, a minimal amount

of sequencing considering the frequently cited complexity of snake venoms (Li et al. 2005b;
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Kini and Doley 2010; Casewell et al. 2013)). This paucity of data, whilst understandable given
the technology and resources of the time, has seemingly led to errors of interpretation, and,
possibly more seriously, over-interpretation of results. Indeed, few genes were found expressed
in all species surveyed (for example out of nine genes, only Kallikrein was detected expressed
in the mandibular salivary gland of all four species of varanid (Fry et al. 2006)). With increased
taxon sampling, only Kallikrein and CRISP were detected in all 18 species of lizard sampled
(Fry et al. 2010) which included 13 species of varanid. Whilst this may be an artefact of low
sequencing depth, the lack of consistent expression should have precluded these genes being
used to support a conserved repertoire of “venom” genes across the Toxicofera.

Perhaps the most significant issue with the evidence used to support the Toxocifera hypothesis
is that all samples used for sequencing were derived from either salivary or venom glands, and
no “body” tissues were included with which to compare gene expression. Transcriptomic
analysis of solely venom gland is perfectly acceptable for descriptive studies which seek to
characterise the transcriptome of this tissue. However, in order to assign a potential toxic role
to a gene (and especially to infer its true evolutionary history, or the evolution of the venom
repertoire in an entire lineage), sequencing the venom gland alone is insufficient. It has long
been known that tissues all express a repertoire of “housekeeping” or maintenance genes (Butte
et al. 2001) and as a result the sequencing of the entire venom or salivary gland will result in
the identification of genes associated with a diverse range of functions (e.g. protein synthesis,
cell-cell signalling and energy metabolism), not to mention that the sample will likely contain
traces of other tissues such as muscle and blood. Consequently, genes cannot be inferred to
encode toxins simply because they happen to be expressed in the venom or salivary gland.
Conservation in the structure of proteins detected in lizard oral secretions has also been used
in support of the Toxicofera hypothesis. However, many secreted proteins, particularly

members of the same gene family, have a conserved cysteine-rich “scaffold” (Anantharaman
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et al. 2003). It should not be too surprising that related proteins have similar structures,
especially as alterations to this scaffold, or to the conserved residues, would likely result in a
disruption of the protein structure and function. Similarity of structure should not necessarily
always be considered to reflect shared toxicity. When using the Australian snake venom
detection kit, Jelinek et al. (Jelinek et al. 2004) found cross-reactivity between several snake
species, most notably the tiger snake (Notechis scutatus) and the black-headed python
(Aspidites melanocephalus). This has been used as evidence that putative toxin genes are
translated into proteins in the venom or oral glands of these species, and that these proteins
represent relics of an ancestral venom system which has been down-regulated in Henophidians
(boas, pythons and several other families of basal snakes) (Fry et al. 2013). However, such
cross-reactivity has been observed many years previously, with cross-reactivity demonstrated
between colubrid oral secretions and antivenoms raised against African and Australian elapids
(Minton and Weinstein 1987). Interestingly, the authors also found some antigenic cross-
reactivity between a Henophidian snake (Epicrates striatus strigilatus) oral secretion when
tested using a polyvalent antivenom raised against three Dendroaspis (mamba) species. Some
of the responsible antigens were shown to be present in both venom and plasma, whilst some
were present only in venom. Therefore, it is likely that some of this cross-reactivity between
species is due to antigens present in secretions common to many species, as well as to cross-
reaction between related members of protein families and cannot be taken as representative of
any shared toxicity.

Whilst several Toxicofera-related studies commendably attempted to functionally test the oral
secretions of some varanid lizard oral secretions, the results must be interpreted carefully.
Purified group Il PLA> from V. varius appears to have caused inhibition of platelet
aggregation, although it is unclear why this was tested on human blood instead of the blood of

native prey items such as birds or rabbits (Weavers 1989). It is also unclear as to whether
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physiological concentrations (within a range of concentrations which occur naturally in oral
secretions) of this protein were used in this assay or if an increased dosage was required to
achieve this inhibition of platelet aggregation.

Crude mandibular oral secretion and synthesised natriuretic peptide from V. varius and V.
komodoensis caused a drop in mean arterial pressure when injected intravenously into
anaesthetised rats (Fry et al. 2006; Fry et al. 2009). However, intravenous (1.V.) administration
is an unlikely delivery method in the event of a lizard bite, and the depressor effects of 1.V.
administration of saliva has been noted in previous experiments (Gibbs 1935; Levy and
Appleton 1942). Therefore, physiological effects noted in a controlled laboratory experiment
may not be translated in a real life scenario. For crude V. varius mandibular secretion, a
concentration of 1mg kg™ was required to cause a drop in blood pressure in an anaesthetised
rat (Fry et al. 2006) whilst a decrease in blood pressure was seen at doses above 100ug/kg for
synthesised natriuretic peptide (from V. komodoensis) with 400ug/kg required to induce
hypotensive collapse (Fry et al. 2009). Conversely, in a similar experiment, 10ug/kg of crude
Papuan taipan (Oxyuranus scutellatus canni) venom caused a complete respiratory and
cardiovascular collapse (Crachi et al. 1999). It is safe to say that lizard “venom” is much more
inefficient, and coupled with the inefficient delivery method in these species, is it realistic that

they will administer sufficient amounts of toxin in a single bite?

Casting doubt on the Toxicofera hypothesis

The Toxicofera hypothesis has been widely accepted for almost a decade, and has proved to be
pervasive and attractive. However, the downside of these qualities is that it has also avoided
scrutiny and testing. There have recently been several studies which have cast doubt on the
Toxicofera hypothesis (Hargreaves et al. 2014a; Reyes-Velasco et al. 2015), although their

interpretation has led to alternative conclusions. Several phylogenetic analyses incorporating
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non-venom gland transcriptomic data have shown that non-toxin sequences nest within clades
of toxin genes, and it has been acknowledged that such findings provide “...strong evidence
for the non-monophyly of Toxicoferan toxins” and that “...the results of [these] phylogenetic
analyses would strongly refute the key prediction of the ‘SEO’ (single early origin)
hypothesis...” (Casewell et al. 2012). Rather than accepting these conclusions, it has instead
been proposed that venom gene recruitment may not be one-way, and that genes encoding
venom toxins undergo a dynamic to-ing and fro-ing between toxin and physiological protein,
whereby a venom toxin may undergo additional duplication, with subsequent recruitment back
into a body tissue to fulfil a non-toxic physiological role. However, the more parsimonious
hypothesis that these sequences actually represent reptile body sequences (which have never
been toxins) forming reptile clades rather than body sequences nesting within venom clades is
not considered. Similarly, Koludarov et al. (Koludarov et al. 2012) investigated the oral
secretions of the lizard Abronia graminea and determined that “the NGF [nerve growth factor]
expressed in venom may be the same gene as is used in the body and therefore may be a rare
case of a venom protein resulting from a non-duplicated gene.” It is possible that the product
of a gene may be used pleiotropically as a toxin (fulfilling a toxic and non-toxic role
simultaneously), but unless its expression is elevated in the salivary gland, there would be little
evidence to suggest that it was anything more than a non-toxic physiological protein encoded
by a housekeeping or maintenance gene.

More recent analyses incorporating an increased number of non-venom gland samples has
further cast doubt on the Toxicofera hypothesis. A large scale test of the robustness of this
hypothesis found that many of the genes used to support the single, early evolution of venom
in squamates are in fact expressed in multiple body tissues including the salivary gland of a
non-Toxicoferan lizard, the leopard gecko (Eublepharis macularius) (Hargreaves et al. 2014a).

No evidence has been found of either a venom-specific splice variant or significantly elevated
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expression level in the venom or salivary gland. Therefore, it is likely that these genes are
simply encoding maintenance or “housekeeping” proteins, and are expressed in multiple tissues
at low levels. Many of these genes were also found expressed in several other body tissues in
Echis coloratus (Hargreaves et al. 2014Db), adding further support that these are housekeeping
genes due to their ubiquitous expression pattern. Several of these genes are also only present
as a single copy in the genome of this species, and so there is no evidence of duplication and
recruitment of a toxic version to the venom gland (Hargreaves et al. 2014a). Indeed, genes
homologous to known toxins have been found expressed in the rictal gland, brain, intestine,
kidney, testes, spleen, ovary, heart, stomach, liver, blood and muscle of the Burmese python
(Python molurus bivittatus) and the venom gland, liver, pancreas, kidney, brain and heart of
Bothrops jararaca (Junqueira-de-Azevedo et al. 2014; Reyes-Velasco et al. 2015). Whilst these
results have been interpreted in different ways, they demonstrate that genes which are
homologous to putative venom genes are expressed in many different tissues outside of the oral
glands, and that sequencing solely the venom or salivary gland without other body tissues to
use as a reference for gene expression is not enough. Interestingly, when the genome of the
Burmese python was surveyed for genes orthologous to putative toxin genes, only one or two
orthologs were detected for each toxin gene family. The authors suggest that the Burmese
python is representative of the ancestral state, prior to the expansion of toxin gene families in
the Caenophidia (Reyes-Velasco et al. 2015).

If the proteins encoded by these genes are not being used to fulfil a venomous function, why
are they still being expressed in the oral secretions of these reptiles? Given the metabolic cost
of producing venom (McCue 2006) it would be more logical that natural selection would act
to end any unnecessary gene expression and protein synthesis. Indeed, this process has been
shown to occur in the marbled sea snake, Aipysurus eydouxii, following a switch in diet from

fish to sedentary fish eggs (Li et al. 2005a; Li et al. 2005b), whereby several toxin genes have
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become pseudogenized (rendered non-functional via mutation). Why then has this not occurred
in a plethora of reptile species which have no use for venomous function? Since many of the
proposed toxins secreted by these glands are nothing of the sort, these oral secretions and the
proteins they contain must have alternative functions, incorporating aspects of lubrication, pre-
digestion and the stimulation of digestive processes and anti-microbial activity (Weinstein et
al. 2012).

Glands and fangs

Reptiles possess many salivary glands that secrete into the oral cavity, with a key role in the
lubrication of food. Many are mucous in nature, however, some glands also have serous
secretions which, in some cases, have become adapted as venom producing glands, as observed
in venomous (Helodermatid) lizards, front-fanged snakes and some rear-fanged snakes.

In front-fanged snakes (such as elapids and vipers) and rear—fanged snakes, the fang and venom
gland develop from a region at the back of the maxillary dental lamina (Vonk et al. 2008). The
final position of the fangs is therefore attained by movement of the growing fangs, forward or
backwards in the mouth, after initiation. Importantly in these venomous snakes, the venom
gland and the fang appear to form from a united primordium that starts as an epithelial
thickening below the eye on the upper jaw. This thickening has been called the primitive dental
ridge (Martin 1899). In Vipera palaestinae, the thickening splits into an anterior gland and
more posterior fang, with the venom gland extending first anteriorly before turning posteriorly
and branching (Kochva 1963). In contrast to the serous venom gland, the nearby supralabial
glands develop from independent placodes and are generally mucous.

In the rear-fanged snakes (Colubridae) the fang is associated with the Duvernoy’s gland, which
appears not to act as a venom gland and has instead been proposed to have an anti-bacterial
role in coating dental surfaces (Jansen 1983). Secretion from the Duvernoy’s gland in

Thamnophis elegans vagrans was found to have enhanced anti-bacterial properties when
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compared to supralabial glands (Jansen 1983). In addition to a similar position of the fang
primordium when compared to front-fanged snakes, the fang and venom gland of rear-fanged
snakes also develops from a united primordium, as has been described in the opisthoglyph
Telescopus fallax and aglyph Thamnophis sirtalis (Kochva 1965). Telescopus has a complete
row of maxillary teeth with the fang primordia and gland forming at the posterior end. In
contrast to the viperidae the venom gland does not first grow anteriorly before growing
posteriorly. The fact that in these different snakes the venom gland and fang initiate from a
common primordium that forms at the back of the maxillary dental lamina indicates that these
front and rear fangs are homologous structures (see also (Vonk et al. 2008)). Importantly,
Duvernoy’s glands do not appear to form at all in many colubrids, for example some species
of the genus Elaphe, genera Lampropeltis, Pituophis, Pseuetes, Rhinocheilus and Spilotes
(Taub 1967). A variety of Elaphe species used in this study (although some of these have since
been assigned to different genera) have no Duvernoy’s gland and their supralabial glands are
purely mucous (Taub 1967). In general such snakes without a Duvernoy’s gland are
constrictors who suffocate their prey before digestion. The lack of large serous glands in these
species has been suggested to be due to secondary loss (Underwood and Kochva 1993; Vidal
2002). Although this may well be correct in some derived forms it is also possible that the
Duvernoy’s gland may not have evolved in all snakes, indicating independent evolution of this
gland. Supporting this idea, Boidae and other primitive snakes have mainly mucous salivary
glands, which are found at a range of positions in the oral cavity (Kochva and Gans 1970) In
Boidae, anterior temporal glands composed of serous cells have been described at the back of
the maxilla (Taub 1966). Supralabial glands are generally thought of as mucous in most snakes
but some Colubrids have serous cells included in the supralabial glands (Taub 1967). Thus
whether a gland is mucous or serous is subject to some variation across reptiles and, in keeping

with this, Duvenoy’s glands can be mucous in part in some Colubridae (Taub 1967). Whether
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a gland is serous or mucous, therefore, cannot be necessarily used to infer evolutionary
relationships.

In both front and rear fanged snakes, the fangs are associated with a gland that forms from the
same dental primordium as the tooth. These are therefore true dental glands. Any homologous
structures would therefore be proposed to share this joint origin. It is therefore important to
know whether venom glands in Toxicoferan lizards also develop from a united dental placode.
If not, they are unlikely to be homologous, but instead would represent independent adaptations
to venom formation in other oral glands. Some oral glands in lizards do indeed appear to
develop from a lamina linked to the dental lamina. For example in chameleons the tooth and
dental gland appear to share a similar origin (Tucker 2010). However in helodermatids, where
venom glands are found on the lower jaw, the glands lie adjacent to the tooth with the duct at
a slight distance when viewed in section (Kardong et al. 2009), indicating that the tooth and
gland develop from separate placodes. Supporting this view, the ducts have been proposed to
run to an opening between the lip and the jaw, rather than to the base of the teeth (Shufeldt
1891) and the location of the gland appears more similar to an infralabial gland. From MR,
however, the gland ducts of helodermids appear to terminate at the base of teeth (Fry et al.,
2010), suggesting a closer relationship with the dentition. Further understanding of the anatomy
and development of the venom glands of helodermatids is important to be able to ascertain
whether they are homologous to those of snakes.

The lack of a developmental link between dental glands and teeth in venomous lizards
compared to snakes, and the lack of a large serous gland associated with the maxillary dental
lamina in primitive snakes and some colubrids strongly suggests that the venom delivery
system in snakes and lizards evolved independently. From the presence of Duvernoy’s glands
in snakes without venom, it would appear that the Duvernoy’s gland first evolved as a branch

of the forming dental lamina and then was adapted into a venom-producing gland in both front
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and rear-fanged snakes. A clear understanding of the embryonic development of the venom
glands in venomous lizards will be important to clarify such points.

Varanid venom

Many Toxicofera-related studies suggest that lizards belonging to the genus Varanus are in fact
venomous, in particular the Komodo dragon V. komodoensis (Fry et al. 2006; Fry et al. 2009;
Fry et al. 2013). A review of the available evidence found it unlikely that the Komodo dragon
utilises venom as a prey capture method, instead suggesting that if it did use venom it was used
as a pre-digestion method (Arbuckle 2009). Historical field observations have suggested that
blood loss due to injury is the main prey capture strategy utilised by Komodo dragons
(Auffenberg 1981). Whilst many Varanus species have been kept in captivity for many years,
there have been almost no reports of any symptoms concurrent with envenomation following
a bite. In the original Toxicofera paper (Fry et al. 2006) there are anecdotal reports of bites
from three species of Varanus which resulted in symptoms such as dizziness and rapid
swelling. Most recently, a bite by a Bengal monitor (Varanus bengalensis) reportedly caused
acute kidney injury to a human patient, which ultimately (and most unfortunately) resulted in
death (Vikrant and Verma 2014). However, no positive identification was made of the
offending animal, other than the name given by the patient. Perhaps more dubious is that the
bite symptoms were more in line with envenoming from a Russell’s viper (Daboia russeli)
(White and Weinstein 2015), a member of the so-called “Big four” and a main cause of
mortality due to snakebite in India (Simpson and Norris 2007). Unfortunately no mention is
made of the bite wound itself which may aid in distinguishing between a lizard or snake as the
culprit. Additionally, a recent bite by a Komodo dragon reportedly resulted in no symptoms of
envenomation (Borek and Charlton 2015). Therefore, the status of varanid lizards as venomous
is uncertain, particularly when compared to known venomous lizards such as the Gila monster

and beaded lizards.
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Conclusions and future directions

Venom evolved multiple times in reptile evolution

Whilst the Toxicofera hypothesis represents a parsimonious explanation of the evolution of
venom in reptiles (one character evolving a single time), the inclusion of non-venom-gland
derived transcriptomic data in phylogenetic analyses along with the quantification of gene
expression would strongly suggest that the Toxicofera hypothesis is unsupported (Hargreaves
et al. 2014a). This would prompt a move back to the previous hypothesis that venom has
evolved multiple times within squamate reptiles, once in the advanced snakes, once in the
helodermatid lizards, and potentially another time in varanid lizards (although more evidence
is needed to confirm this). This is in keeping with the large phylogenetic distance between
venomous snakes and venomous lizards, the differing morphology of venom delivery systems
between these animals (e.g. gland location, teeth/fangs), and the differing uses for their venoms

(i.e. snakes predominantly for prey capture and helodermatid lizards for defence).

Simplified complexity of reptile venom

The rejection of the Toxicofera hypothesis and the ruling out of many of the genes used to
support it as toxins leads to an inescapable conclusion, that snake venom is not as complex as
previously suggested (Li et al. 2005b; Kini and Doley 2010; Casewell et al. 2013). A review
of venom proteome data from several species (Calvete et al. 2007; Wagstaff et al. 2009; Vonk
et al. 2013) shows that snake venom is composed of a relatively small number of gene families
encoding a few dozen different proteins, with most extensive diversity found in only one or a

few of these families (Calvete 2013; Hargreaves et al. 2014a). Whilst post-translational
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modifications may prove to play a significant role in generating more extensive diversity from
a limited genetic background (Casewell et al. 2014), the idea that snake venom is a “complex
cocktail” (Casewell et al. 2013) of hundreds of different proteins encoded by many gene
families seems to be unsupported by experimental evidence. The low number of products in
snake venom makes perfect sense as (1) a complex proteinaceous mixture would be
metabolically expensive to produce and (2) natural selection will act to streamline the venom,
tailoring it to the snakes’ prey items. In short, a simple venom is efficient; a complex venom is
overkill. The implications of this reduced complexity are significant, particularly for the
development of the next generation of antivenom treatments utilising methods such as “string
of beads” (Whitton et al. 1993) and “epitope-string” (Casewell et al. 2013). A reduction in the
number of likely toxins inherently means a reduction in the number of targets requiring
neutralisation by antivenom, and as a consequence the reduced number of components
contained in the antivenom would mean a reduction in antigenicity, meaning a reduced chance
of adverse reactions to treatment such as anaphylaxis and serum sickness (Nuchprayoon and
Garner 1999).

From an evolutionary perspective, the reduction in the number of toxins does not detract from
the fascination or specialization of venoms, in fact the opposite is true. The occurrence of
lineage-specific gene duplications (for example complement ¢3 and nerve growth factor in
Elapids (Sunagar et al. 2013; Hargreaves et al. 2014a; Hargreaves et al. 2014b)) would indicate
that these genes may confer some prey-specific effects (as seen in the Mangrove catsnake,
Boiga dendrophilia (Pawlak et al. 2006)), or may have allowed adaptation to a new ecological

niche.

The changing definition of venom
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The Oxford English dictionary defines venom as “a poisonous substance secreted by animals
such as snakes, spiders, and scorpions and typically injected into prey or aggressors by biting
and stinging”. A more specific and long-standing definition would be “a complex substance
produced in a specialized gland and delivered by an associated specialized apparatus that is
deleterious to other organisms in a given dosage and is actively used in the subjugation and/or
digestion of prey and/or in defence” (Mebs 2002). More recently, the quest for a catch-all term
that encompasses the diverse uses of venom by insects, molluscs, reptiles and mammals has
led to increasingly broad definitions of venom, such as “a secretion, produced in a specialised
tissue (generally encapsulated in a gland) in one animal and delivered to a target animal through
the infliction of a wound (regardless of how tiny it is). A venom must further contain molecules
that disrupt normal physiological or biochemical processes so as to facilitate feeding or defence
by/of the producing animal” (Fry et al. 2012b). It is perhaps time to discard this quest in favour
of more restricted, possibly even lineage-specific, terminology with emphasis on the biological
role of the venom to the survival of the animal. As an example, human saliva contains many of
the proteins encoded by the same gene families which are also found present in the snake
venom proteome, including cystatins, disintegrin-like metalloproteinases, epididymal
secretory protein E1, group 1A PLA:s, B-defensins, and kallikrein (Hu et al. 2005; Guo et al.
2006). Human saliva has also been shown to be toxic (Bonilla et al. 1971). However, humans
are not considered to be venomous, we do not use these secretions to kill or otherwise
incapacitate prey, and so these proteins must fulfil some other biological role, such as pre-
digestion and lubrication. Therefore, the presence of proteins homologous to known (or
proposed) toxin proteins in oral secretions does not automatically mean that the organism is
venomous. Moreover, considering the presence of homologous proteins in the oral secretions
of basal snakes as toxins based on their use as toxins in more derived species, without evidence

of these proteins showing any functional significance, is an erroneous and premature
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assumption, which has been stated previously by other authors (Kardong 2012; Weinstein et

al. 2012).

Future directions

The increased application of second generation DNA sequencing technologies and the
integration of multiple types of ‘omic data (genomic, transcriptomic, proteomic) is
revolutionising the study of the evolution and composition of venom in reptiles, with
implications not only for our understanding of this evolutionary innovation, but also for the
treatment of snakebite and development of novel pharmaceuticals. Once the genome to
proteome path of toxin expression is completely elucidated, this leaves the fundamentally
important question: what do these proteins actually do? Perhaps more pertinent, is the
functional property of these proteins relevant to the biological role of the venom and to the
survival of the animal? Oral secretions are likely to have several biological roles, such as pre-
digestion and lubrication, and so some proteins are likely to fulfil these rather than act as venom
toxins. Only with functional characterisation (which can be a long and arduous task,
particularly compared to the “one-shot” nature of high throughput sequencing) of these putative
toxins can a true role be assigned to them. Moreover, functional testing of proteins should be

performed at physiological concentrations on native prey items.
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